三种强大的物体识别算法

转载 2015年08月13日 22:52:48

SIFT/SURF基于灰度图,

一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。

二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向,找到占80%以上的方向作为主方向;而SURF则选择圆形邻域,并且使用活动扇形的方法求出特征点主方向,以主方向对齐即完成旋转不变。

三、以主方向为轴可以在每个特征点建立坐标,SIFT在特征点选择一块大小与尺度相应的方形区域,分成16块,统计每一块沿着八个方向占的比例,于是特征点形成了128维特征向量,对图像进行归一化则完成强度不变;而SURF分成64块,统计每一块的dx,dy,|dx|,|dy|的累积和,同样形成128维向量,再进行归一化则完成了对比度不变与强度不变。

 

haar特征也是基于灰度图,

首先通过大量的具有比较明显的haar特征(矩形)的物体图像用模式识别的方法训练出分类器,分类器是个级联的,每级都以大概相同的识别率保留进入下一级的具有物体特征的候选物体,而每一级的子分类器则由许多haar特征构成(由积分图像计算得到,并保存下位置),有水平的、竖直的、倾斜的,并且每个特征带一个阈值和两个分支值,每级子分类器带一个总的阈值。识别物体的时候,同样计算积分图像为后面计算haar特征做准备,然后采用与训练的时候有物体的窗口同样大小的窗口遍历整幅图像,以后逐渐放大窗口,同样做遍历搜索物体;每当窗口移动到一个位置,即计算该窗口内的haar特征,加权后与分类器中haar特征的阈值比较从而选择左或者右分支值,累加一个级的分支值与相应级的阈值比较,大于该阈值才可以通过进入下一轮筛选。当通过分类器所以级的时候说明这个物体以大概率被识别。

 

广义hough变换同样基于灰度图,

使用轮廓作为特征,融合了梯度信息,以投票的方式识别物体,在本blog的另一篇文章中有详细讨论,这里不再赘述。

 

 

特点异同对比及其适用场合:

 

三种算法都只是基于强度(灰度)信息,都是特征方法,但SIFT/SURF的特征是一种具有强烈方向性及亮度性的特征,这使得它适用于刚性形变,稍有透视形变的场合;haar特征识别方法带有一点人工智能的意味,对于像人脸这种有明显的、稳定结构的haar特征的物体最适用,只要结构相对固定即使发生扭曲等非线性形变依然可识别;广义hough变换完全是精确的匹配,可得到物体的位置方向等参数信息。前两种方法基本都是通过先获取局部特征然后再逐个匹配,只是局部特征的计算方法不同,SIFT/SURF比较复杂也相对稳定,haar方法比较简单,偏向一种统计的方法形成特征,这也使其具有一定的模糊弹性;广义hough变换则是一种全局的特征——轮廓梯度,但也可以看做整个轮廓的每一个点的位置和梯度都是特征,每个点都对识别有贡献,用直观的投票,看票数多少去确定是否识别出物体。

转自:http://blog.csdn.net/cy513/article/details/4285579

图像物体分类与检测算法综述

图像物体分类与检测算法综述 转自《计算机学报》 图像物体分类与检测是计算机视觉研究中的两个重要的基本问题,也是图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。 本文从物体分类与检测问题的...
  • AkashaicRecorder
  • AkashaicRecorder
  • 2017-04-01 13:41:49
  • 14003

基于R-CNN的物体检测-CVPR 2014

转载自:http://blog.csdn.net/hjimce/article/details/50187029 一、相关理论    本篇博文主要讲解2014年CVPR上的经典paper:《Ric...
  • qq_26898461
  • qq_26898461
  • 2016-04-22 16:35:13
  • 7626

图像识别算法

图像特征包括颜色特征、纹理特征、形状特征以及局部特征点等。 局部特点具有很好的稳定性,不容易受外界环境的干扰。 1. 局部特征点 图像特征提取是图像分析与图像识别的前提,它是将高维的...
  • qq_34057694
  • qq_34057694
  • 2017-09-04 16:33:01
  • 5405

Haar+adaboost物体检测算法知识点归纳总结

基于此方法研究车牌识别系统相关应用,以下主要总结其中的关键点和难点,需要对haar特征和adaboost原理有一定了解,供刚开始学习和使用此法的童鞋参考,肯定不够全面,亦或存在不够准确的地方,诸位可指...
  • tigerda
  • tigerda
  • 2017-04-14 13:26:46
  • 1869

OpenCV轮廓检测,计算物体旋转角度

效果还是有点问题的,希望大家共同探讨一下     // FindRotation-angle.cpp : 定义控制台应用程序的入口点。 // // findContours.cpp...
  • wangyaninglm
  • wangyaninglm
  • 2015-02-27 00:54:37
  • 27146

物体识别

SIFT算法(Scale-Invariant feature transform,尺度不变特征变换)通过在图像中提取独特性不变特征,可以实现物体或场景在不同视角下的可靠匹配。其提取的特征对于图像缩放、...
  • huohongpeng
  • huohongpeng
  • 2017-06-14 10:10:15
  • 2516

三种强大的物体识别算法介绍

  • 2014年01月15日 16:48
  • 15KB
  • 下载

三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换的特性对比分析

识别算法概述: SIFT/SURF基于灰度图,一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再...
  • cy513
  • cy513
  • 2009-06-20 20:54:00
  • 70753

三大物体识别算法--SIFT/SURF、haar特征、广义hough变换的特性深入剖析

(参考CSDN博主cy513的分析内容) 首先,介绍一下人类是如何识别物体的: 人类是如何识别一个物体的呢,当然要对面前的这个物体为何物要有一个概念,人类一生下来就开始通过视觉获取...
  • zj360202
  • zj360202
  • 2014-11-26 16:51:06
  • 3015

图像物体分类和物体检测算法的概括

1.研究问题: 物体分类:
  • smilebluesky
  • smilebluesky
  • 2014-11-06 23:03:03
  • 6607
收藏助手
不良信息举报
您举报文章:三种强大的物体识别算法
举报原因:
原因补充:

(最多只允许输入30个字)