题目概述
有一行共n个方块,用3种颜色填色,要求相邻两个不同色且首尾不同色,求填色方法数
输入
每行一个正整数n
限制
1<=n<=50
输出
每行一个数,所求方法数
样例输入
1
2
3
4
50
样例输出
3
6
6
18
1125899906842626
讨论
递推,碰到难题了,但思路不变,从n个开始分析,设方法数f(n),f(n)受制于前n-1个方格的情况,但相比f(n-1),允许第1个和第n-1个方格相同,那么先考虑不同的情况,第1个和第n-1个不同,唯一确定了第n个方格,这便是1*f(n-1),再考虑相同的情况,这样没法直接分析,继续倒推到n-2个方格,由于第1和第n-1同,而相邻不能同,因而第n-2必然和第1不同,这刚好符合f(n-2)的情况,这时候第n个可以有2种方案,这便是2*f(n-2),两部分加和,f(n)=f(n-1)+2*f(n-2),数据规模不大,直接递推就可以了,不用再整矩阵幂了
题解状态
0MS,1716K,595B,C++
题解代码
#include<algorithm>
#include<string.h>
#include<stdio.h>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 203
#define memset0(a) memset(a,0,sizeof(a))
#define llong long long
llong fun(llong n)
{
if (n == 1)
return 3;
if (n == 2)
return 6;
if (n == 3)
return 6;
llong a = 3, b = 6, c = 6;
for (n -= 3; n; n--) {
a = b;
b = c;
c = b + 2 * a;//这里c,b,a分别代表了f(n),f(n-1),f(n-2)
}
return c;
}
int main(void)
{
//freopen("vs_cin.txt", "r", stdin);
//freopen("vs_cout.txt", "w", stdout);
llong a;
while (~scanf("%lld", &a)) {//input
printf("%lld\n", fun(a));//output
}
}
EOF

853

被折叠的 条评论
为什么被折叠?



