SPFA

本文介绍了一种基于队列实现的最短路径快速算法(SPFA),适用于解决带负权边的单源最短路径问题。通过不断松弛操作更新从起点到各顶点的最短路径,并利用队列来优化搜索过程。若某顶点入队次数超过顶点数,则说明存在负权回路。
摘要由CSDN通过智能技术生成
建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。

如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

#include 
   
   
    
    
#include 
    
    
     
     
#include 
     
     
      
      
#include 
      
      
       
       
#include 
       
       
         #include 
        
          using namespace std; #define maxn 1000 #define INF 1<<29 struct Edge{ int from , to ,val; Edge(int from,int to,int val) : from(from),to(to),val(val){} }; struct HeapNode { int d ,u; bool operator < (const HeapNode & rhs) const { return d > rhs.d; } }; int m , n , dest; int d[maxn],p[maxn],done[maxn]; vector 
         
           edges; vector 
          
            G[maxn]; void init(int n) { for(int i = 0;i< n;i++) G[i].clear(); edges.clear(); } void addEdge(int from,int to,int val) { edges.push_back(Edge(from,to,val)); m = edges.size(); G[from].push_back(m - 1); } int inq[maxn],cnt[maxn]; bool negativeCycle(int s) { queue 
           
             Q; memset(inq,0,sizeof inq); memset(cnt,0,sizeof cnt); for(int i = 1;i<= dest;i++) { d[i] = INF; Q.push(i); } d[s] = 0;inq[s] = true; while(!Q.empty()) { int u = Q.front();Q.pop(); inq[u] = false; for(int i = 0;i 
            
              d[u] + e.val) { d[e.to] = d[u] + e.val; p[e.to] = G[u][i]; if(!inq[e.to]) { Q.push(e.to); inq[e.to] = true; if(++cnt[e.to] > dest) { return true; } } } } } return false; } int main() { freopen("in.txt","r",stdin); while(~scanf("%d%d",&n,&dest) && n> 0) { init(n); int from,to ,val; for(int i = 0 ;i< n;i++) { scanf("%d%d%d",&from,&to,&val); addEdge(from,to,val); } if(negativeCycle(1)) { printf("存在负环!\n"); } else { printf("%d\n",d[dest]); } } return 0; } 
             
            
           
          
         
       
      
      
     
     
    
    
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值