建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
#include
#include
#include
#include
#include
#include
using namespace std; #define maxn 1000 #define INF 1<<29 struct Edge{ int from , to ,val; Edge(int from,int to,int val) : from(from),to(to),val(val){} }; struct HeapNode { int d ,u; bool operator < (const HeapNode & rhs) const { return d > rhs.d; } }; int m , n , dest; int d[maxn],p[maxn],done[maxn]; vector
edges; vector
G[maxn]; void init(int n) { for(int i = 0;i< n;i++) G[i].clear(); edges.clear(); } void addEdge(int from,int to,int val) { edges.push_back(Edge(from,to,val)); m = edges.size(); G[from].push_back(m - 1); } int inq[maxn],cnt[maxn]; bool negativeCycle(int s) { queue
Q; memset(inq,0,sizeof inq); memset(cnt,0,sizeof cnt); for(int i = 1;i<= dest;i++) { d[i] = INF; Q.push(i); } d[s] = 0;inq[s] = true; while(!Q.empty()) { int u = Q.front();Q.pop(); inq[u] = false; for(int i = 0;i
d[u] + e.val) { d[e.to] = d[u] + e.val; p[e.to] = G[u][i]; if(!inq[e.to]) { Q.push(e.to); inq[e.to] = true; if(++cnt[e.to] > dest) { return true; } } } } } return false; } int main() { freopen("in.txt","r",stdin); while(~scanf("%d%d",&n,&dest) && n> 0) { init(n); int from,to ,val; for(int i = 0 ;i< n;i++) { scanf("%d%d%d",&from,&to,&val); addEdge(from,to,val); } if(negativeCycle(1)) { printf("存在负环!\n"); } else { printf("%d\n",d[dest]); } } return 0; }