动态规划之--背包问题基础专讲

https://www.bilibili.com/video/BV1mA411n7rR?spm_id_from=333.880.my_history.page.click

动态规划之背包问题系列

01 背包

问题

最基本的背包问题就是01背包问题(01 knapsack problem):一共有 n 件物品,第 i(i从1开始)件物品的体积 v[i],价值为 w[i] 。 在总体积不超过背包承载上限 m 的情况下,能够装入背包的最大价值是多少?

定义

使用 dp[i][j] 表示将 前 i 件物品装进体积为 j 的背包可以获得的最大价值, 0<=i<=N, 0<=j<= m

再来分析整个运转流程:

在这里插入图片描述
如图所示,描述略。见视频吧。
因此得到的朴素版本的状态转移方程是:

在这里插入图片描述
经过滚动数组优化后的 01背包问题转移方程代码示例:

dp[0,...,m] = 0
for (int i = 1; i < n; i++) {
    // 必须逆向枚举!!!
     for (int j = m; j >= v[i]; j--) {
			dp[j] = Max( dp[j] , dp[j - v[i]] + w[i] );
	}
}
  • 时间:O(n*m),即取决于物品数量和背包体积
  • 空间:O(m)

完全背包

问题

完全背包(unbounded knapsack problem)与01背包不同就是每种物品可以有无限多个:一共有 N 种物品,每种物品有无限多个,第 i(i从1开始)种物品的体积为 v[i] ,价值为 w[i]。在总重量不超过背包承载上限 m 的情况下,能够装入背包的最大价值是多少?

定义

使用 dp[i][j] 表示将 前 i 件物品装进体积为 j 的背包可以获得的最大价值, 0<=i<=N, 0<=j<= m

因此得到的状态转移方程是:

dp[i][j] = max(dp[i−1][j], dp[i][j−v[i] ] + w[i] ) // j >= w[i]

这个状态转移方程与01背包问题唯一不同就是 max 第二项 不是 dp[i-1] 而是 dp[i]

最终经过恒等变形的代码如下:

//完全背包
dp[0,...,m] = 0
public void fun02() {
    for (int i = 1; i <= n; i++) {
        // 必须正向枚举!!!
        for (int j = v[i]; j <= m; j++) {
            dp[j] = Max(dp[j], dp[j - v[i]] + w[i]);
        }
    }
}
  • 时间:O(n*m),即取决于物品数量和背包体积
  • 空间:O(m)

其他

在这里插入图片描述

涉及到的LC题目

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值