海明校验原理

①海明校验的基本思想
将有效信息按某种规律分成若干组,每组安排一个校验位,做奇偶测试,就能提供多位检错信息,以指出最大可能是哪位出错,从而将其纠正。实质上,海明校验是一种多重校验。
②海明校验的特点
它不仅具有检测错误的能力,同时还具有给出错误所在准确位置的能力。

一.校验位的位数 校验位的位数与有效信息的长度有关


设:N--为校验码的位数 K--是有效信息位 r--校验位(分成r组作奇偶校验,能产生r位检错信息)
海明码应满足 N=K+r≤2r-1 若r=3 则N=K+r≤7 所以K≤4

 

二.分组原则`

在海明码中, 位号数(1、2、3、……、n)为2的权值的那些位,即:
1(20)、2(21)、4(22)、8(23)、…2r-1位,作为奇偶校验位
并记作: P1、P2、P3 、P4、…Pr,余下各位则为有效信息位。
例如: N=11 K=7 r=4 相应海明码可示意为
位号   1  2   3   4   5   6   7   8   9   10   11
P占位 P1 P2 × P3 × × × P4   ×   ×   ×
其中×均为有效信息,海明码中的每一位分别被P1P2P3P4… Pr 中的一至若干位所校验,其规律是:
第i位由校验位位号之和等于i的那些校验位所校验
如:海明码的位号为3,它被P1P2(位号分别为1,2)所校验
海明码的位号为5,它被P1P3(位号分别为1,4)所校验
归并起来: 形成了4个小组,每个小组一个校验位,校验位的取值,仍采用奇偶校验方式确定。 


 

三.编码、查错、纠错原理
以4位有效信息(b1、b2、b3、b4)和3位校验位(P1、P2、P3)为例: K=4 r=3
海明序号 1   2   3   4   5   6   7
海明码     P1 P2 b1 P3 b2 b3 b4
根据表2-8可以看到
(1)每个小组只有一位校验位,第一组是P1、第二组是P2、第三组是P3。
(2)每个校验位校验着它本身和它后面的一些确定位。  
  

1.编码原理(采用偶校验)


1)若有效信息b1b2b3b4=1011 先将它们分别填入第3、5、6、7位
2)再分组进行奇偶统计,分别填入校验位P1、P2、P3的值
如:第一组有:P1b1b2b4 因b1b2b4含偶数个1,故P1应取值为0
      第二组有:P2b1b3b4 因b1b3b4含奇数个1,故P2应取值为1
      第三组有:P3b2b3b4 因b2b3b4含偶数个1,故P3应取值为0
      海明编码为:P1P2b1P3b2b3b4=0110011

2.查错与纠错


因为分三组校验,每组产生一位检错信息、3组共3位检错信息,便构成一个指误字,上例指误字由G1G2G3组成。
其中:
G3=P3⊕b2⊕b3⊕b4              P3b2b3b4=0011
G2=P2⊕b1⊕b3⊕b4             P2b1b3b4=1111
G1=P1⊕b1⊕b2⊕b4            P1b1b2b4=0101
采用偶校验,在没有出错情况下G1G2G3=000。由于在分组时,就确定了每一位参加校验的组别,所以指误字能准确地指出错误所在位。 
如:若第3位b1出错,由于b1参加了第一组和第二组的校验,必然破坏了第一组和第二组的偶性,从而使G1和G2为1。 因为b1未参加第三组校验,故G3=0,所以构成的指误字G3G2G1=011它指出第3位出错。
反之:若G3G2G1=111 则说明海明码第7位b4出错。因为只有第7位b4参加了3个小组的校验,破坏了三个小组的偶性。
假定:
源部件发送海明码为:0110011 接收端接收海明码为:0110011
则: 三个小组都满足偶校验要求,这时G3G2G1=000,表明收到信息正确,可以从中提出有效信息1011参与运算处理。
纠错:若接收端收到的海明码为0110111,分组检测后指误字G3G2G1=101,它指出第5位出错,则只须将第5位变反,就可还原成正确的数码0110011。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值