MATLAB较复杂算法仿真案例
文章平均质量分 84
本专栏的算法案例,相对于《MATLAB仿真案例》中总结的算法案例,略微复杂,程序代码量也较多。
优惠券已抵扣
余额抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Simuworld
仿真世界。专业从事MATLAB,simulink,FPGA等仿真工作。擅长通信信号处理,无线基带,深度学习,智能优化,图像处理等
展开
-
【参数辨识】基于Actor-Critic构架的系统参数辨识matlab仿真
强化学习领域中,Actor-Critic架构是一种结合了值函数方法和策略梯度方法的优点的方法。这种方法允许算法同时学习一个策略(Actor)和一个价值函数(Critic)。原创 2024-08-01 14:45:35 · 94 阅读 · 0 评论 -
【强化学习】基于强化学习的轮式机器人控制系统simulink建模与仿真
基于强化学习(Reinforcement Learning, RL)的轮式机器人控制系统是一种自主学习方法,它使机器人能够通过与环境的互动来优化其行为策略,以达成特定任务目标。这种控制框架特别适合于非确定性环境中的决策问题,如导航、避障、物体抓取等。强化学习的核心在于通过试错(trial-and-error)学习来最大化累积奖励。其基本框架由环境(Environment)、代理(Agent)、状态(State)、动作(Action)、奖励(Reward)和策略(Policy)组成。环境(E)原创 2024-07-13 04:20:22 · 106 阅读 · 0 评论 -
【三维重建】二维人体图像的三维重建算法matlab仿真
二维人体图像的三维重建是一个复杂且高度跨学科的领域,涉及计算机视觉、图形学、机器学习等多个分支。其核心目标是从单个或多个二维图像中恢复出人体的三维形状和姿态,这对于虚拟试衣、动画制作、医疗诊断等领域具有重要意义。二维图像到三维重建的流程大致可以分为以下几个步骤:特征检测与匹配:从输入图像中提取关键点或边缘特征,并在不同视图间进行匹配,为后续三维空间的对应关系建立基础。相机标定与三维重建:利用相机内外参数估计,确定图像拍摄的几何关系,结合匹配特征进行三维点云的初步构建。原创 2024-07-02 01:29:07 · 110 阅读 · 0 评论 -
【LSTM】基于LSTM网络模型的序列分类算法matlab仿真
基于长短时记忆网络(Long Short-Term Memory,LSTM)的序列分类算法是一种深度学习方法,特别适用于处理和预测时间序列数据。LSTM能够有效地解决传统循环神经网络(RNN)中存在的梯度消失和梯度爆炸问题,从而更好地捕捉长期依赖关系。LSTM网络通过特殊的门控机制来维护和更新内部状态,以便在网络中传递远距离的信息。LSTM单元包含输入门、遗忘门、输出门以及细胞状态四个核心组件。原创 2024-04-26 18:10:34 · 260 阅读 · 0 评论 -
【多UAV航迹规划】基于ACO蚁群优化的多UAV航迹规划算法matlab仿真
多无人机(Unmanned Aerial Vehicle, UAV)航迹规划问题是研究如何在满足一系列约束(如飞行安全、任务要求、能源限制等)的前提下,为多架UAV制定最优或近似最优的飞行轨迹,以高效完成指定任务。蚁群优化(Ant Colony Optimization, ACO)算法作为一种模仿自然界蚂蚁觅食行为的群体智能优化方法,被广泛应用于解决多UAV航迹规划问题。3.1 ACO蚁群优化算法原理。原创 2024-04-10 19:35:00 · 186 阅读 · 0 评论 -
【元胞自动机】基于元胞自动机的室内人员疏散动态模拟matlab仿真
元胞自动机是一种离散化的模拟方法,它把空间划分为一系列等大小的单元格(元胞),每个元胞具有有限状态集合,并遵循一定的局部规则演化。在室内人员疏散模拟中,元胞代表的是建筑内的一个最小空间单位,如地板上的一个网格点,而元胞的状态则可能代表空闲、占用(人员)、障碍物等状态。模拟结束后,通过对疏散时间和安全性指标(如人群平均疏散时间、出口拥堵程度等)的统计分析,评价疏散方案的有效性和安全性。原创 2024-03-26 04:44:47 · 189 阅读 · 0 评论 -
【位置预测】基于深度学习网络的终端移动位置预测的leach协议matlab仿真
LEACH是一种用于无线传感器网络的分层聚类协议,旨在通过本地数据融合和层次型通信来延长网络寿命。在LEACH中,传感器节点自组织成簇,每个簇有一个簇头节点,负责收集簇内其他节点的数据,并进行数据融合以减少通信开销。在一个集成深度学习预测模型的LEACH协议中,基本流程可描述如下:数据收集阶段:每个传感器节点收集自身及邻近节点的位置信息、剩余能量信息等,并将这些信息作为输入特征。原创 2024-03-16 22:48:46 · 268 阅读 · 0 评论 -
【协作频谱感知】基于高斯混合模型聚类的认知无线电网络中协作频谱感知matlab仿真
协作频谱感知是指多个认知用户通过共享各自的频谱感知信息,共同决定主用户信号是否存在的一种策略。高斯混合模型是一种统计学习方法,可以用来模拟由多个不同高斯分布构成的概率密度函数,非常适合表示复杂、多模态的数据分布,如认知无线电环境中可能出现的不同类型的无线信号。一旦建立并训练好GMM模型,认知无线电网络可以根据模型预测新观测点属于空闲频谱的概率。若该概率低于预设阈值,则认为存在主用户信号;反之,则判断频谱为空闲状态。原创 2024-03-05 20:40:46 · 241 阅读 · 0 评论 -
【16QAM相位锁定】基于锁相环的16QAM相位锁定matlab仿真,输出锁定曲线和星座图矫正图
在数字通信系统中,正交幅度调制(QAM)是一种高效的调制方式,能够在有限的带宽内传输更多的信息。16QAM作为QAM的一种,具有较高的频谱效率和抗噪声性能。然而,由于信道失真、多径效应和相位噪声等因素的影响,接收端可能会遇到相位偏移的问题。为了解决这个问题,可以采用锁相环(PLL)技术来实现相位的锁定和跟踪。本文将详细介绍基于锁相环的16QAM相位锁定的原理,并通过数学公式进行深入阐述。3.1 16QAM调制原理16QAM是一种将每4个比特映射到一个复数符号上的调制方式。原创 2024-02-21 01:44:37 · 320 阅读 · 0 评论 -
【曲柄滑块遮阳篷】基于牛顿近似法的曲柄滑块遮阳篷的机械性能模拟matlab仿真
曲柄滑块机构是一种常见的机械传动机构,广泛应用于各种机械装置中,包括遮阳篷的伸缩机构。为了准确模拟和分析曲柄滑块遮阳篷的机械性能,我们可以采用牛顿近似法。牛顿近似法是一种数值分析方法,通过迭代计算来逼近非线性方程组的解。在进行机械性能模拟时,我们需要考虑曲柄滑块机构的动态行为。这包括曲柄的转动速度、加速度以及滑块的速度、加速度等。为了模拟这些动态性能,我们需要对运动学方程进行微分处理。对于曲柄转角(\theta),其速度和加速度可以表示为(\dot{\theta})和(\ddot{\theta})。原创 2024-02-21 01:26:21 · 59 阅读 · 0 评论 -
【PSO-ELM】基于粒子群PSO优化算法的ELM网络,并对比优化后的EML的预测性能
粒子群优化算法(PSO, Particle Swarm Optimization)是一种基于群体智能的全局优化技术,它模拟了鸟群或鱼群等生物群体的社会行为。而极限学习机(ELM, Extreme Learning Machine)则是一种单隐层前馈神经网络,其特点是训练速度快且泛化能力强。将粒子群优化算法应用于ELM网络的主要目的是优化网络中的隐层参数(如隐层神经元数量、权重和偏置),以提高模型的预测性能。原创 2024-02-15 22:47:59 · 256 阅读 · 0 评论 -
【魔方恢复】魔方自动恢复算法matlab仿真
魔方自动恢复算法,通常指的是通过一系列的计算步骤来找到一个给定魔方的解,即使其从任意状态恢复到初始状态(通常是每个面都是单一颜色的状态)。这种算法通常涉及到复杂的数学和计算机科学原理,包括群论、图论和搜索算法等。由于篇幅限制,我无法在这里提供超过4000字的详细介绍,但我可以概述魔方自动恢复算法的基本原理,并提供一些关键数学公式的介绍。一、基本原理魔方自动恢复算法的核心是基于魔方的数学结构,特别是其组成的群结构。原创 2024-02-05 23:51:29 · 330 阅读 · 2 评论 -
【自适应控制】MRAC模型参考自适应控制系统的simulink建模与仿真
模型参考自适应控制(Model Reference Adaptive Control, MRAC)是一种先进的控制策略,旨在使被控对象的输出尽可能接近一个给定的理想模型输出。通过实时调整控制器参数,MRAC能够在线适应被控对象参数的变化和不确定性,从而实现高性能的跟踪和控制。本文将深入介绍MRAC的原理,并通过数学公式进行详细阐述。MRAC系统主要由三部分组成:被控对象、参考模型和自适应控制律。其中,被控对象是需要控制的实际系统;参考模型是一个理想的、易于实现的模型,其输出代表了期望的系统性能;原创 2024-01-16 21:54:34 · 327 阅读 · 0 评论 -
【数据压缩】基于哈夫曼编码的数据压缩算法matlab,输出哈夫曼编码树
数据压缩是一种通过特定的编码技术,以更少的数据位来表示信息,从而达到节省存储空间和提高数据传输效率的方法。在众多压缩算法中,哈夫曼编码(Huffman Coding)是一种被广泛应用的熵编码算法,它基于数据的统计特性,为不同频率出现的符号分配不同长度的编码,从而达到最优的数据压缩效果。原创 2024-01-08 14:37:45 · 1030 阅读 · 0 评论 -
【TS-I-Leach协议】基于无线传感器网络的leach-c协议matlab性能仿真,对比TS-I-Leach协议
无线传感器网络(WSN)是近年来快速发展的一个研究领域,其核心在于如何通过大量分布式传感器节点来协同监测和处理环境中的各种信息。在这种背景下,能量效率成为一个至关重要的考量因素,因为传感器节点通常是由电池供电,且在很多应用场景中,电池更换或充电是不现实的。因此,研究如何延长WSN的生命周期(即从网络启动到第一个节点耗尽能量的时间)具有重要意义。为了实现这一目标,研究者们提出了许多分层路由协议,其中最具代表性的是低功耗自适应集簇分层型协议(LEACH)。原创 2023-12-29 20:39:14 · 914 阅读 · 0 评论 -
【STBC】基于MIMO系统STBC空时分组码matlab性能仿真
随着无线通信技术的快速发展,对于更高数据传输速率和更低误码率的需求日益增长。多输入多输出(MIMO)技术通过利用空间复用和分集,显著提高了无线通信系统的性能。作为MIMO技术的重要组成部分,空时分组码(STBC)以其简单的编码结构和优秀的性能受到了广泛关注。MIMO系统通过在发射端和接收端配置多个天线,利用空间复用和分集来提高系统容量和传输可靠性。空间复用通过在多个天线上同时传输不同的数据流,提高了数据传输速率;而空间分集则通过在不同的天线上发送相同的数据流,提高了信号接收的可靠性。原创 2023-12-17 22:06:40 · 247 阅读 · 0 评论 -
【Radon变换】基于Radon变换的视网膜血管跟踪和直径估计matlab仿真
视网膜血管的形态和直径变化与多种疾病如糖尿病视网膜病变、高血压视网膜病变等有关。因此,对视网膜血管的自动跟踪和直径估计在疾病诊断和治疗中具有重要意义。近年来,研究者已经提出了许多方法,如基于滤波器的方法、基于模型的方法和基于深度学习的方法。然而,这些方法在某些情况下可能受到噪声、血管交叉和血管弯曲的影响。为了解决这些问题,本文提出了一种基于Radon变换的新方法。原创 2023-11-29 19:02:46 · 312 阅读 · 0 评论 -
【滤波器组】基于余弦调制滤波器组的matlab仿真
滤波器组是一种将输入信号分解为多个子带信号并进行处理的技术,广泛应用于信号处理、图像处理、通信等领域。余弦调制滤波器组作为滤波器组的一种特殊形式,具有优良的频率特性和良好的重构性能,近年来受到了越来越多的关注和研究。余弦调制滤波器组的基本思想是通过余弦函数对原型滤波器进行调制,生成一组具有不同频率特性的子带滤波器。这些子带滤波器可以将输入信号分解到不同的频率子带,并对每个子带信号进行独立的处理和分析。原创 2023-11-22 02:01:46 · 225 阅读 · 0 评论 -
【路线跟踪】基于kalman滤波和SVM的人员检测和行走路线跟踪算法matlab仿真
人员检测和行走路线跟踪是计算机视觉领域的重要任务,具有广泛的应用,如智能监控、人机交互等。在实际应用中,由于环境的复杂性和人员运动的不确定性,准确的人员检测和行走路线跟踪仍然是一个具有挑战性的问题。3.1、Kalman滤波原理Kalman滤波是一种线性最小方差最优估计算法,适用于对动态系统进行状态估计。在人员检测和行走路线跟踪中,Kalman滤波可以用于预测人员的运动状态,提高跟踪的准确性。Kalman滤波的基本思想是通过观测数据和系统模型,对系统状态进行最优估计。原创 2023-11-17 00:49:09 · 189 阅读 · 0 评论 -
【卷积小波神经网络】基于卷积小波神经网络的SAR图像海冰变化检测算法matlab仿真
基于卷积小波神经网络的SAR图像海冰变化检测算法是一种利用卷积小波神经网络(Convolutional Wavelet Neural Network,CWNN)对合成孔径雷达(Synthetic Aperture Radar,SAR)图像进行处理和分析的算法,主要用于海冰变化检测。该算法基于深度学习原理,利用卷积小波变换对SAR图像进行特征提取,然后通过神经网络对特征进行分类和识别,最终实现海冰变化检测。基于卷积小波神经网络的SAR图像海冰变化检测算法的原理可以分为三个步骤:预处理、特征提取和分类识别。原创 2023-11-02 23:24:11 · 177 阅读 · 0 评论 -
【负载均衡】基于BBO优化算法的网络负载均衡matlab仿真
基于BBO(Bayesian Belief Optimization)优化算法的网络负载均衡是一种利用BBO算法优化网络负载分布,提高网络性能的策略。BBO算法是一种基于贝叶斯网络的优化算法,通过建立负载与网络性能之间的概率模型,利用贝叶斯推断和马尔科夫链蒙特卡罗(MCMC)方法进行优化。基于BBO优化算法的网络负载均衡主要涉及以下步骤:3.1 建立负载与网络性能之间的概率模型在网络负载均衡问题中,需要建立一个负载与网络性能之间的概率模型。原创 2023-10-31 21:14:21 · 130 阅读 · 0 评论 -
【迁移学习】基于SVM支持向量机的迁移学习matlab仿真
基于SVM(支持向量机)的迁移学习是一种机器学习技术,它可以将在一个领域或任务上学到的知识迁移到另一个领域或任务上。这种迁移学习的核心思想是利用SVM的泛化能力,通过在新任务上微调模型参数,使得模型能够适应新任务的特征和数据分布。一、原理迁移学习的原理在于,许多不同的任务之间可能存在共享的知识或模式,因此,在一个任务上学到的模型可以通过适当的调整来应用于另一个任务。基于SVM的迁移学习主要通过以下两个步骤实现:预训练阶段:在源任务(源领域)上训练SVM模型,学习数据的特征和分类边界。原创 2023-09-18 16:32:41 · 462 阅读 · 0 评论 -
【优化】基于WOA鲸鱼优化的云任务调度优化算法matlab仿真
基于WOA鲸鱼优化的云任务调度优化算法是一种利用鲸鱼优化算法(WOA)来解决云任务调度问题的优化方法。该算法由三个主要阶段组成:围捕猎物、气泡网捕食和搜索猎物。围捕猎物阶段,鲸鱼根据当前搜索到的最优解(猎物)的位置,不断更新自己的位置,最终包围猎物。具体数学公式如下:t表示当前迭代次数A和C是系数向量A和C的计算方式如下:随着迭代次数t的增加,参数A和收敛因子a逐渐减小,若|A| < 1,则各鲸鱼逐渐包围当前最优解,在WOA中属于局部寻优阶段。气泡网捕食阶段,鲸鱼通过释放气泡来捕捉猎物。原创 2023-09-13 11:17:28 · 101 阅读 · 0 评论 -
【深度学习】基于LSTM-CNN深度学习网络的OCR手写数字识别算法matlab仿真
基于LSTM-CNN深度学习网络的OCR手写数字识别算法是一种结合了卷积神经网络(CNN)和长短时记忆网络(LSTM)的算法。这种算法可以对手写数字图像进行自动识别。算法的基本原理如下:预处理:首先,需要对手写数字图像进行预处理,例如灰度化、二值化、去噪等操作。这些操作可以使得图像的特征更加明显,有助于提高识别的准确度。卷积神经网络(CNN):将预处理后的图像输入到CNN中,CNN可以通过卷积操作提取图像的特征。CNN由多个卷积层和池化层组成,卷积层用于提取图像的特征,池化层用于减少特征图的维度。原创 2023-09-11 22:46:44 · 128 阅读 · 0 评论 -
【深度学习】分别通过BILSTM网络和GMDH网络对传染病变化趋势进行预测matlab仿真
传染病变化趋势预测是一个重要的问题,涉及到数据科学、机器学习和统计学等多个领域。下面分别介绍BILSTM网络和GMDH网络的基本原理和数学公式,并阐述它们在传染病变化趋势预测中的应用。一、BILSTM网络BILSTM是双向长短期记忆网络的变体,是一种适用于序列数据的深度学习模型。在传染病变化趋势预测中,可以将时间序列数据作为输入,输出为下一时间步长的预测值。原理BILSTM模型由两个LSTM层组成,每个LSTM层负责从输入序列中学习长期依赖关系。原创 2023-09-09 14:16:55 · 95 阅读 · 0 评论 -
【优化】基于WOA鲸鱼优化的云任务调度算法matlab仿真,对比ACO,PSO以及IWC
基于WOA鲸鱼优化的云任务调度算法是一种新兴的优化技术,它结合了鲸鱼优化算法(WOA)和云计算的任务调度技术,以实现更高效、更公平的云任务调度。这种算法能够处理各种复杂的优化问题,并已经在许多领域取得了显著的成功。首先,让我们了解一下WOA算法的基本原理。WOA是一种自然启发式的优化算法,它受到了鲸鱼在捕食行为中的启发。在WOA中,每个解(或称为候选解)都被视为海洋中的一只鲸鱼,其位置代表了问题的潜在解。算法通过模仿鲸鱼的搜索行为来不断更新鲸鱼的位置,从而逐渐逼近问题的最优解。原创 2023-09-06 13:35:43 · 140 阅读 · 0 评论 -
LDPC误码率仿真,对比SP,MS,NMS以及OMS四种译码算法
LDPC(低密度奇偶校验码)是一种用于纠错编码的技术,其核心是基于奇偶校验的检错和纠错机制。LDPC码的性能优越,特别是在长码长的情况下,其误码率(BER, Bit Error Rate)性能可以逼近香农极限。SP(软判决)、MS(最大似然软判决)、NMS(非最大似然软判决)和OMS( Offset Min-Sum)是LDPC码的几种主要译码算法。这些算法的主要区别在于如何处理接收到的信号,以达到最佳的错误纠正效果。原创 2023-09-03 16:08:43 · 443 阅读 · 0 评论 -
【强化学习】基于Q-learning的H无穷控制器设计
基于Q-learning的H无穷控制器设计是一种应用强化学习方法来优化H无穷控制器参数的方法。H无穷控制是一种用于线性时不变系统的鲁棒控制方法,旨在设计一个控制器来确保系统在不确定性和扰动下的稳定性和性能。Q-learning是强化学习中的一种经典算法,用于学习在不同状态下采取不同动作以最大化累积奖励的策略。在H无穷控制中,可以将状态视为系统状态变量的值,动作视为控制器参数的调整。将系统的状态表示为一个向量,包括系统的状态变量、测量数据、误差等。定义控制器参数的可调范围,例如增益矩阵、权重等。原创 2023-08-30 23:54:42 · 181 阅读 · 0 评论 -
【通信】基于5G通信的FBMC调制系统频谱matlab仿真
FBMC(Filter Bank Multicarrier)和OFDM(Orthogonal Frequency Division Multiplexing)都是用于无线通信系统中的调制和多路复用技术,它们在原理、公式、区别和频谱特点等方面有一些显著的差异。OFDM是一种将高速数据流分成多个低速子流,每个子流在频域上相互正交地传输的调制技术。它利用正交子载波的特性来降低子载波之间的干扰,从而实现高效的频谱利用和抗多径衰落的能力。原创 2023-08-29 20:27:26 · 259 阅读 · 0 评论 -
【强化学习】基于深度强化学习的贪吃蛇游戏matlab仿真
基于深度强化学习的贪吃蛇游戏是一种将人工智能与经典游戏相结合的应用。其中,深度强化学习是一种通过智能体与环境的交互来学习最优策略的方法,而贪吃蛇游戏是一种经典的游戏,玩家通过操控蛇的移动来获取食物并避免碰撞自身或边界。将深度强化学习应用于贪吃蛇游戏中,可以让智能体自主学习蛇的移动策略,最终实现高分游戏。3.1强化学习框架在强化学习中,智能体通过与环境的交互进行学习。状态(State):表示环境的当前情况,例如蛇的位置和食物的位置。原创 2023-08-15 01:20:51 · 254 阅读 · 0 评论 -
【语音识别】基于MFCC和人工神经网络的语音信号识别算法matlab仿真
基于MFCC和人工神经网络的语音信号识别算法”是一种经典的语音信号识别方法,结合了信号处理和模式识别技术。该算法的主要步骤包括语音信号的预处理、MFCC特征提取以及使用人工神经网络进行分类识别。下面将详细介绍该算法的系统原理和具体的数学公式:系统原理:语音信号预处理:首先,采集语音信号并将其转换为数字信号。然后,对数字信号进行预加重和分帧处理,使得语音信号的高频成分得到强调,并将语音信号切分为短时帧。原创 2023-07-24 20:21:42 · 205 阅读 · 1 评论 -
【强化学习】基于深度强化学习的打球游戏训练和测试matlab仿真
基于深度强化学习的打球游戏是指利用深度学习和强化学习技术来训练一个智能体(Agent),使其学会在虚拟环境中进行打球游戏,并通过与环境的交互不断优化策略,以达到尽可能高的游戏得分。这个过程类似于训练一个计算机游戏中的AI角色。强化学习:强化学习是一种机器学习方法,旨在通过智能体与环境的交互来学习最优策略,以使智能体能够在特定任务中获得最大的累积奖励。强化学习的核心是学习一个策略函数,该函数接收环境状态作为输入,并输出智能体在该状态下应该采取的动作。原创 2023-07-30 15:04:15 · 298 阅读 · 0 评论 -
【三维重建】基于双目人脸图像的脸部三维重建算法matlab仿真
基于双目视觉的人脸三维重建算法是一种将双目视觉技术应用于人脸三维重建的方法。该算法通过从两个不同角度的视角捕获的图像中提取人脸特征,并使用立体匹配算法计算深度信息,从而生成人脸的三维模型。在本文中,我们将探讨基于双目视觉的人脸三维重建算法的原理、流程和关键技术,以及其在计算机视觉和图像处理领域的应用。双目视觉的原理双目视觉是一种基于两个不同位置的相机捕获物体图像的技术。通过这种技术,可以捕获物体的不同视角,并从中提取有关物体距离和深度的信息。原创 2023-06-10 15:38:43 · 557 阅读 · 0 评论 -
【多智能体】基于线性多智能体的分布式共识动态协议matlab仿真
线性多智能体系统(linear multi-agent systems)是指由多个智能体通过相互通信和合作,完成某个共同的任务的系统。在实际应用中,线性多智能体系统的分布式共识动态协议被广泛应用于分布式计算、机器人控制、智能交通等领域,可以提高系统的性能和效率。本文将介绍线性多智能体系统的分布式共识动态协议的原理、优缺点和实现过程。原创 2023-06-11 14:29:51 · 261 阅读 · 0 评论 -
【图像处理】人物目标摔倒检测识别matlab仿真
跌倒是老年人、儿童、残障人士等易受伤人群面临的重要问题。及时发现跌倒事件并采取措施可以减轻跌倒带来的伤害。因此,人物目标跌倒检测是一项重要的技术。本文将介绍一种基于计算机视觉技术的人物目标跌倒检测方法,该方法可以实时检测人物目标的跌倒事件,并给出相应的警报。人物目标跌倒检测包括两个问题:人物目标检测和跌倒检测。人物目标检测是从摄像头拍摄的视频流中检测出人物目标的位置和大小;跌倒检测是从人物目标的运动轨迹中检测出跌倒事件。原创 2023-06-29 22:24:22 · 272 阅读 · 0 评论 -
【深度学习】基于DNN深度神经网络的无线多用户干扰消除算法matlab仿真
DNN WMMSE(Deep Neural Network Weighted Minimum Mean Square Error)是一种利用深度神经网络(DNN)优化无线多用户干扰消除问题的方法。该方法通过将干扰消除问题转化为一个非凸的加权最小均方误差(WMMSE)优化问题,并利用DNN来近似求解该问题。在无线通信中,多个用户同时使用同一个频段进行通信会引起干扰,从而降低通信质量。为了解决这一问题,需要设计一个干扰消除算法,使得各个用户之间的干扰最小化,从而提高通信质量。原创 2023-06-29 22:36:18 · 220 阅读 · 0 评论 -
【深度学习】基于LSTM-CNN网络的数字识别matlab仿真
数字图片识别是计算机视觉领域中的一个重要问题,它涉及到数字识别、图像分类、字符识别等多个方面,具有广泛的应用领域。例如,在自动驾驶、人脸识别、智能家居等领域中,数字图片识别技术都是必不可少的。目前,基于深度学习的数字图片识别算法已经成为主流,其中LSTM-CNN深度学习网络是一种比较流行的算法。1、算法原理基于OCR的LSTM-CNN深度学习网络数字图片识别算法,主要由两部分组成:卷积神经网络(CNN)和长短时记忆网络(LSTM)。CNN用于提取数字图片的特征,LSTM用于对特征进行序列建模和分类。原创 2023-05-28 01:42:52 · 130 阅读 · 0 评论 -
【编解码】海明码和CRC校验码的matlab对比仿真
海明码和CRC校验码都是常用的数据校验技术,用于检测和纠正数据传输过程中的错误。本文将详细介绍海明码和CRC校验码的原理、应用和比较。一、海明码1.海明码概念海明码是一种带冗余的编码方式,用于检测和纠正数据传输中的错误。海明码的基本思想是在数据中添加一定数量的冗余比特,使得接收端在接收到数据时能够检测和纠正其中的错误,从而提高数据传输的可靠性。海明码的优点是可靠性高、纠错能力强,缺点是编码效率低、冗余比特多。海明码主要应用于数据传输、存储和通信等领域。2.海明码原理。原创 2023-05-31 02:47:25 · 250 阅读 · 0 评论 -
【图像处理】通过三维DCT变换实现目标跟踪的matlab仿真
目标跟踪(Object Tracking)是计算机视觉领域的一个重要研究方向,它的主要目标是在视频序列中跟踪一个特定的目标,并在目标发生变化的情况下,自适应地调整跟踪算法以保持准确度和鲁棒性。在这个过程中,目标的位置和形状信息需要被准确地估计和更新,以便跟踪算法能够对目标进行有效的跟踪。在目标跟踪中,特征提取是一个非常重要的环节,它的作用是将目标从背景中区分出来,并提取出与目标相关的特征信息。传统的目标跟踪算法主要采用手工设计的特征,如颜色、纹理、形状等等。原创 2023-04-25 03:44:37 · 207 阅读 · 0 评论 -
【图像处理】基于hough算法的钟表图片时钟指针检测和时间信息提取matlab仿真
霍夫变换是一种特征提取(feature extraction),被广泛应用在图像分析(image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。原创 2023-03-28 21:26:00 · 91 阅读 · 0 评论