Lavi的专栏

在自己的世界里孤芳自赏,在别人的世界里随遇而安

排序:
默认
按更新时间
按访问量

leetcode2:两数相加

1 题目 给定两个非空链表来表示两个非负整数。位数按照逆序方式存储,它们的每个节点只存储单个数字。将两数相加返回一个新的链表。 你可以假设除了数字 0 之外,这两个数字都不会以零开头。 示例: 输入:(2 -> 4 -> 3) + (5 -&am...

2018-10-14 21:55:21

阅读数:14

评论数:0

leetcode1:两数之和

1 题目 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用。 示例: 给定 nums = [2, 7, 11, 15], target = 9 因为 nums[0] + nums[1] = 2 + 7 = 9 所...

2018-10-14 20:52:43

阅读数:12

评论数:0

sklearn中fit、fit_transform、transform的区别

1 前言 在使用sklearn处理数据的时候,会经常看到fit_tranform(),但是偶尔也会遇到fit()和transform()函数,不太明白怎么使用,于是查询资料整理一下。 2 理解 fit:原义指的是安装、使适合的意思,其实有点train的含义但是和train不同的是,它并不是一个训练...

2018-10-12 16:03:49

阅读数:11

评论数:0

集成学习(Ensemble Learning),Bagging、Boosting、Stacking

1 集成学习概述 1.1 概述 在一些数据挖掘竞赛中,后期我们需要对多个模型进行融合以提高效果时,常常会用Bagging,Boosting,Stacking等这几个框架算法,他们不是一种算法,而是一种集成模型的框架。 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂...

2018-10-12 10:49:43

阅读数:25

评论数:0

深度学习中embedding的含义

Embedding在数学上表示一个maping, f: X ->Y 也就是一个function,其中该函数是injective(就是我们所说的单射函数,每个Y只有唯一的X对应,反之亦然)和structure-preserving (结构保存,比如在X所属的空间上X1 &...

2018-10-11 15:34:19

阅读数:18

评论数:0

argparse模块中的action参数

用argparse模块让python脚本接收参数时,对于True/False类型的参数,向add_argument方法中加入参数action=‘store_true’/‘store_false’。 顾名思义,store_true就代表着一旦有这个参数,做出动作“将其值标为True”,也就是没有时,...

2018-10-01 21:37:15

阅读数:41

评论数:0

OpenCV选点画框

代码 #include <opencv2/opencv.hpp> #include<string> using namespace cv; RNG g_rng(12345);//毛大大的博客里看到的生成随机数,...

2018-09-30 21:06:14

阅读数:32

评论数:0

图像的仿射变换原理及python实现

1. 原理 1.1 原理 仿射变换(Affine Transformation 或Affine Map)是一种二维坐标(x, y)到二维坐标(u, v)的线性变换,其数学表达式形式如下: 对应的齐次坐标矩阵表示形式为: 仿射变换保持了二维图形的“平直性”(直线经仿射变换后依然为直线)和“平行性...

2018-09-21 13:16:17

阅读数:64

评论数:0

opencv-python合成模糊图像

之前需要评估图像质量来筛选成像质量不错的图片,去除由于对焦,运动等造成的模糊图像,所以在构建数据集的时候考虑用opencv对清晰的图片进行处理获得模糊的图片从而进行训练。 运动模糊图像 一般来说,运动模糊的图像都是朝同一方向运动的,那么就可以利用cv2.filter2D函数。 imp...

2018-09-06 19:05:38

阅读数:65

评论数:0

简单理解与实验生成对抗网络GAN

之前 GAN网络是近两年深度学习领域的新秀,火的不行,本文旨在浅显理解传统GAN,分享学习心得。现有GAN网络大多数代码实现使用python、torch等语言,这里,后面用matlab搭建一个简单的GAN网络,便于理解GAN原理。 GAN的鼻祖之作是2014年NIPS一篇文章:Generati...

2018-09-06 18:47:46

阅读数:47

评论数:0

Pytorch模型的保存与加载

前言 在使用Pytorch训练模型的时候,经常会有在GPU上保存模型然后再CPU上运行的需求,在实验的过程中发现在多GPU上训练的Pytorch模型是不能在CPU上直接运行的,几次遇到了这种问题,这里研究和记录一下。 模型的保存与加载 例如我们创建了一个模型: model = MyVg...

2018-08-30 16:58:20

阅读数:94

评论数:0

互联网时代的社会语言学:基于SNS的文本数据挖掘

今年上半年,我在人人网实习了一段时间,期间得到了很多宝贵的数据,并做了一些还算有意义的事情,在这里和大家一块儿分享。感谢人人网提供的数据与工作环境,感谢赵继承博士、詹卫东老师的支持和建议。在这项工作中,我得到了很多与众人交流的机会,特别感谢 OpenParty 、 TEDxBeijing 提供的平...

2018-08-30 14:46:23

阅读数:132

评论数:0

如何走近深度学习人脸识别?你需要这篇超长综述 | 附开源代码

前言 相信做机器学习或深度学习的同学们回家总会有这样一个烦恼:亲朋好友询问你从事什么工作的时候,如何通俗地解释能避免尴尬? 我尝试过很多名词来形容自己的工作:机器学习,深度学习,算法工程师/研究员,搞计算机的,程序员…这些词要么自己觉得不满意,要么对方听不懂。经历无数次失败沟通,最后总结了一个...

2018-08-30 10:55:16

阅读数:120

评论数:0

python获得list或numpy数组中最大元素对应的索引

获得list中最大元素的索引 aa = [1,2,3,4,5] aa.index(max(aa)) 相应的最小值使用 aa = [1,2,3,4,5] aa.index(min(aa)) 获得numpy数组中最大元素的索引 可以使用numpy的函数,argmax获得最大元素的索...

2018-08-19 09:41:49

阅读数:496

评论数:0

“.dll .obj .lib”和“ .so .o .a”文件与动态链接和静态链接

“.dll .obj .lib”和“ .so .o .a”文件 (1) .dll .obj .lib使用在windows平台下。 .dll:动态链接库,作为共享函数库的可执行文件。 .obj:目标文件,相当于源代码对应的二进制文件,未经重定位。 .lib:可理解为多个o...

2018-08-08 10:03:23

阅读数:72

评论数:0

人脸识别算法评价指标——TAR,FAR,FRR,ERR

前言 最近在阅读人脸识别的论文,发现里面用到的指标是TAR(True Accept Rate)和FAR(False Accept Rate),开始没有在意以为相当于TPR(True Positive Rate)和FPR(False Positive Rate), 后来发现并不是这么回事,在百度上...

2018-07-28 13:18:57

阅读数:1108

评论数:0

numpy笔记——np.linalg

np.linalg 模块下常用的有连个函数 - (1)np.linalg.inv():矩阵求逆 - (2)np.linalg.det():矩阵求行列式(标量) np.linalg.norm 顾名思义,linalg=linear+algebra(线性代数),norm则表示范数,首先需要注意的...

2018-07-27 22:27:20

阅读数:127

评论数:0

Python笔记——python中的__init__和__new__的区别

一、init 方法是什么?(init前后的线是双下划线) 使用Python写过面向对象的代码的同学,可能对 init 方法已经非常熟悉了,init 方法通常用在初始化一个类实例的时候。例如: # -*- coding: utf-8 -*- class Person(object): ...

2018-07-27 22:18:25

阅读数:67

评论数:0

Python笔记——python中的__init__和__new__的区别

一、init 方法是什么?(init前后的线是双下划线) 使用Python写过面向对象的代码的同学,可能对 init 方法已经非常熟悉了,init 方法通常用在初始化一个类实例的时候。例如: # -*- coding: utf-8 -*- class Person(object): ...

2018-07-25 15:05:15

阅读数:65

评论数:0

TensorFlow笔记——数据类型dtype

Tensorflow中,主要有以下几种数据类型(dtype),在旧版本中,不用加tf也能使用。 有符号整型 tf.int8:8位整数。 tf.int16:16位整数。 tf.int32:32位整数。 tf.int64:64位整数。 无符号整型 tf.uint8:8位无符号整数。 t...

2018-07-24 21:25:44

阅读数:71

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭