Lavi的专栏

在自己的世界里孤芳自赏,在别人的世界里随遇而安

排序:
默认
按更新时间
按访问量

“.dll .obj .lib”和“ .so .o .a”文件与动态链接和静态链接

“.dll .obj .lib”和“ .so .o .a”文件 (1) .dll .obj .lib使用在windows平台下。 .dll:动态链接库,作为共享函数库的可执行文件。 .obj:目标文件,相当于源代码对应的二进制文件,未经重定位。 .lib:可理解为多个o...

2018-08-08 10:03:23

阅读数:13

评论数:0

人脸识别算法评价指标——TAR,FAR,FRR,ERR

前言 最近在阅读人脸识别的论文,发现里面用到的指标是TAR(True Accept Rate)和FAR(False Accept Rate),开始没有在意以为相当于TPR(True Positive Rate)和FPR(False Positive Rate), 后来发现并不是这么回事,在百度上...

2018-07-28 13:18:57

阅读数:151

评论数:0

numpy笔记——np.linalg

np.linalg 模块下常用的有连个函数 - (1)np.linalg.inv():矩阵求逆 - (2)np.linalg.det():矩阵求行列式(标量) np.linalg.norm 顾名思义,linalg=linear+algebra(线性代数),norm则表示范数,首先需要注意的...

2018-07-27 22:27:20

阅读数:21

评论数:0

Python笔记——python中的__init__和__new__的区别

一、init 方法是什么?(init前后的线是双下划线) 使用Python写过面向对象的代码的同学,可能对 init 方法已经非常熟悉了,init 方法通常用在初始化一个类实例的时候。例如: # -*- coding: utf-8 -*- class Person(object): ...

2018-07-27 22:18:25

阅读数:18

评论数:0

Python笔记——python中的__init__和__new__的区别

一、init 方法是什么?(init前后的线是双下划线) 使用Python写过面向对象的代码的同学,可能对 init 方法已经非常熟悉了,init 方法通常用在初始化一个类实例的时候。例如: # -*- coding: utf-8 -*- class Person(object): ...

2018-07-25 15:05:15

阅读数:34

评论数:0

TensorFlow笔记——数据类型dtype

Tensorflow中,主要有以下几种数据类型(dtype),在旧版本中,不用加tf也能使用。 有符号整型 tf.int8:8位整数。 tf.int16:16位整数。 tf.int32:32位整数。 tf.int64:64位整数。 无符号整型 tf.uint8:8位无符号整数。 t...

2018-07-24 21:25:44

阅读数:19

评论数:0

TensorFlow笔记——tf.split()拆分tensor和tf.squeeze()

tf.split() 参数说明: split( value, num_or_size_splits, axis=0, num=None, name='split' ) value: 输入的tensor num_or_size_splits: 如果是...

2018-07-24 21:21:00

阅读数:74

评论数:0

图像的仿射变换及OpenCV实现

1. 目标 在这个教程中你将学习到如何: 1. 使用OpenCV函数 warpAffine 来实现一些简单的重映射. 2. 使用OpenCV函数 getRotationMatrix2D 来获得一个 2 \times 3 旋转矩阵 2. 原理 2.1 什么是仿射变换? ...

2018-07-24 20:43:15

阅读数:47

评论数:0

TensorFlow笔记——用expand_dim()来增加维度

TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数。当然,我们常用tf.reshape(input, shape=[])也可以达到相同效果,但是有些时候在构建图的过程中,placeholder没有被feed具体的值,这时...

2018-07-24 16:24:18

阅读数:66

评论数:0

机器学习中数学(10)——先验概率,后验概率,似然函数和极大似然估计

前言 读论文的时候总是碰到什么先验概率,后验概率,似然,总是搞不懂是什么意思,今天决定集中学习一下,并在此记录。 基本概念 先了解几个基本的概念: 先验概率: 是指根据以往经验和分析得到的概率。 后验概率:事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,即执果求因。 ...

2018-07-21 13:19:10

阅读数:163

评论数:0

Ubuntu 14.04安装多个版本的gcc和多个版本的gcc切换

前言 今天编译caffe 的matlab接口,编译时提示gcc的版本太高,需要使用gcc 4.7.x,于是使用如下命令去装: sudo apt-get install gcc-4.7 sudo apt-get install g++-4.7 结果提示,没有需要更新的内容。我有点不解。继续上网...

2018-07-17 22:34:11

阅读数:25

评论数:0

MTCNN(Multi-task convolutional neural networks)将多任务级联卷积神经网络用于人脸检测和对齐

前言 本文为论文Multi-task convolutional neural networks的关键内容翻译。 1. 摘要 摘要:由于姿势、光照或遮挡等原因,在非强迫环境下的人脸识别和对齐是一项具有挑战性的问题。最近的研究显示,深度学习算法可以很好的解决上述的两个问题。在这篇文章中,我们利...

2018-07-14 10:46:09

阅读数:122

评论数:0

mtcnn坐标分析

前言 本文为个人随笔,为了记录阅读facenet中使用的mtcnn的代码的一些笔记。本文使用的是https://github.com/davidsandberg/facenet 中实现的mtcnn的代码。这个facenet的代码中有使用mtcnn的代码。本文主要记录mtcnn返回的关键点坐标和b...

2018-07-13 20:50:50

阅读数:64

评论数:0

DeepID人脸识别算法的进化

前言 DeepID,目前最强人脸识别算法,已经三代。 如今,深度学习方兴未艾,大数据风起云涌,各个领域都在处于使用深度学习进行强突破的阶段,人脸识别也不例外,香港中文大学的团队使用卷积神经网络学习特征,将之用于人脸识别的子领域人脸验证方面,取得了不错的效果。虽然是今年7月份才出的成果,但连发三...

2018-07-12 14:35:48

阅读数:30

评论数:0

FaceNet--Google的人脸识别

引入 随着深度学习的出现,CV领域突破很多,甚至掀起了一股CV界的创业浪潮,当次风口浪尖之时,Google岂能缺席。特贡献出FaceNet再次刷新LFW上人脸验证的效果记录。 本文是阅读FaceNet论文的笔记,所有配图均来自于论文。 转载请注明:http://blog.csdn.net/...

2018-07-12 13:05:30

阅读数:59

评论数:0

人脸识别——FaceBook的DeepFace、Google的FaceNet

DeepFace–Facebook的人脸识别 连续看了DeepID和FaceNet后,看了更早期的一篇论文,即FB的DeepFace。这篇论文早于DeepID和FaceNet,但其所使用的方法在后面的论文中都有体现,可谓是早期的奠基之作。因而特写博文以记之。 DeepFace基本框架 人...

2018-07-12 12:55:22

阅读数:71

评论数:0

(4)Windows下caffe安装成功测试(以cifar10为例)

前言 前面的博客中,我们介绍了windows平台下caffe的安装,并使用mnist进行了测试。为了巩固和熟练caffe的使用,我们本节使用数据库CIFAR-10再次练习caffe的使用。 1、数据库CIFAR-10的下载与介绍 进入caffe目录下的data/cifar10目录下,有个...

2018-07-08 19:47:54

阅读数:77

评论数:0

caffe的python接口学习(8):caffemodel中的参数及特征的抽取

如果用公式 y=f(wx+b) 来表示整个运算过程的话,**那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项。**f是激活函数,有sigmoid、relu等。x就是输入的数据。 数据训练完成后,保存的caffemodel里面,实际上就是各层...

2018-07-08 17:19:23

阅读数:51

评论数:0

caffe的python接口学习(7):绘制loss和accuracy曲线

使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。 推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起...

2018-07-08 16:58:22

阅读数:72

评论数:0

caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片

经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测。 我们从mnist数据集的test集中随便找一张图片,用来进行实验。 #coding=utf-8 import ca...

2018-07-08 16:19:56

阅读数:40

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭