前言
在进行人脸识别的测评中,经常会看到涉及到Gallery和Probe两部分数据。初入门的小白可能不太明白这两部分数据是用来干什么的,为什么需要这么分。下面面我们就来讲解一下。
人脸识别评测两种方式
一般的人脸识别算法的性能有两种评测的方式,一种是人脸比对,另一个种是人脸识别。人脸比对就比较好理解了,就是给出两场图片组成一个图片对,让算法来判断这连个图片是不是一个人。另一种就是人脸识别,人脸识别需要一组图像集和一张待认证的图像,我们的目的就是从图像集中找出和待认证的图像身份相同的图像。
Gallery和Probe
从字面的意思来理解,Gallery就是画廊的意思,形象的说,其实就是我们实现准备的一组图片,然后摆在那,构成一个画廊,当有需要认证的图片来的时候,我们就从画廊中挑选出和这个待认证的图像身份相同的图片。这个待认证的图像就是Probe。Probe就是探头、探测器的意思,很形象,就是我们拿着探测器去画廊里试探那张图片和这样探测图像的身份是一致的。很多的Probe就构成了Probe set。Gallery又叫distractors(干扰项),也很形象就是用来干扰我们探测的图像。一般Probe的身份是已知的,探测之后我们找出Gallery中和Probe最相似的图像,然后判断这张图像的身份和Probe是否相同,如果相同则成功识别,如果不相同识别失败。对Probe set中所有的Probe统计失败和成功的次数,计算出TPR和FPR,就可以计算出人脸算法CMC曲线。我这里讲的是最简单的情况,关于人脸识别算法的性能指标请参考我的博客