蓝桥杯笔记--玩具蛇

文章描述了一个关于算法的问题,小蓝有一条16节的玩具蛇,需要将其放入一个4x4的字母标记盒子中。每节蛇可以直线或转弯放置,目标是计算所有不同的放置方法。使用深度优先搜索策略,遍历所有可能的路径并排除无效的放置,最终计算出总的方案数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

小蓝有一条玩具蛇,一共有 16 节,上面标着数字 1至 16。每一节都是一个正方形的形状。相邻的两节可以成直线或者成 90 度角。

小蓝还有一个 4 × 4 的方格盒子,用于存放玩具蛇,盒子的方格上依次标着字母 A到 P 共 16 个字母。

小蓝可以折叠自己的玩具蛇放到盒子里面。他发现,有很多种方案可以将玩具蛇放进去。

下图给出了两种方案:

请帮小蓝计算一下,总共有多少种不同的方案。如果两个方案中,存在玩具蛇的某一节放在了盒子的不同格子里,则认为是不同的方案。

运行限制

  • 最大运行时间:1s

  • 最大运行内存: 128M

思路:

  1. 求共有几种方案,使用深度优先搜索

  1. 蛇可以从各个位置开始,枚举各个位置

  1. 因为有些条件情况不满足,所以在每次进行搜索之前,要进行初始化数组。

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>

using namespace std;
int g[4][4];
int n = 4;
int dx[] = { 0,1,0,-1 }, dy[] = { -1,0,1,0 };


int dfs(int x, int y, int k)
{
    g[x][y] = k;
    if (k == 16)
        return 1;
int res = 0;
    for (int i = 0; i < 4; ++i)
    {
        int tx = x + dx[i];
        int ty = y + dy[i];
        if (tx < 0 || ty < 0 || tx >= n || ty >= n || g[tx][ty] != 0)
            continue;
        res += dfs(tx, ty, k + 1);
        g[tx][ty] = 0;
    }
    return res;
}
int main()
{
    int res=0;
    for (int i = 0; i < n; ++i)
    {
        for (int j = 0; j < n; j++)
        {
            memset(g, 0, sizeof g);
            res += dfs(i,j,1);
           
        }
    }
    cout << res << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值