PyTorch
liuwp5
这个作者很懒,什么都没留下…
展开
-
Tensor 数组、列向量、行向量
学习神经网络的时候经常被一个概念混淆,今天终于算是进一步理解。记录一下。无论是在python里的numpy,还是各种框架里的tensor,数组就是一个数组而已,不等同于行向量或者列向量。但是它有转化成行/列向量的潜质(通过特定函数如unsqueeze增加维度)。举个例子x1 = torch.Tensor([1, 2, 3, 4, 5])x2 = torch.unsqueeze(x1, dim=1)# 打印x1,x2的sizeprint(x1.size()) # torch.Size([5]原创 2020-07-28 18:34:49 · 4080 阅读 · 0 评论 -
动手学深度学习(PyTorch)笔记二、深度学习基础——线性回归
动手学深度学习(PyTorch)代码笔记记录pytorch用于深度学习的学习过程。二、深度学习基础1、线性回归线性回归和softmax回归都是单层神经网络,用于解决回归问题。(1)基本要素1、模型定义y^=x1w1+x2w2+b\hat y = x_1w_1 + x_2w_2 + by^=x1w1+x2w2+b2、模型训练(1)训练数据(2)损失函数L=1n∑12(y^(i)−y(i))2L = \frac 1 n\sum\frac 1 2(\hat y^{(i)} -原创 2020-07-23 23:42:39 · 296 阅读 · 0 评论 -
动手学深度学习(PyTorch)笔记一、预备知识
动手学深度学习(PyTorch)代码笔记记录pytorch用于深度学习的学习过程。一、预备知识1、数据操作(1)创建Tensorimport torchx1 = torch.empty(5, 3) # 未初始化tensorx2 = torch.rand(5, 3) # 随机初始化tensorx3 = torch.zeros(5, 3, dtype=torch.long) # long型/int64型 零tensor# ----------------------x31 =原创 2020-06-19 11:10:08 · 171 阅读 · 0 评论