求求求求求求组组组组合合数……

组合数


公式法

公式可理解为有a个人,需要从中找b个人做我小弟的方案数;

我们从a中随机抓一个人,此时有两种情况:

1.我觉得他很勇,所以我决定让他成为我的小弟,那么接下来我就要从a-1个人中选b-1个人了

2.我觉得他很虚,所以我觉得不选他,那么接下来我就要从a-1个人中再选b个人

以此类推

#include<bits/stdc++.h>
using namespace std;
const int nn=2005,mod=1e9+7;
long long  f[nn][nn];
int main(){
    int n;
    cin>>n;
    for(int i=0;i<=2000;i++){
        for(int j=0;j<=i;j++){
            if(!j)f[i][j]=1;
            else f[i][j]=(f[i-1][j]+f[i-1][j-1])%mod;
        }
    }
    while(n--){
        int a,b;
        cin>>a>>b;
        cout<<f[a][b]<<endl;
    }
    return 0;
}

费马小定理+快速幂

为什么将除法转换为乘法?

(a + b) % p = (a % p + b % p) % p
(a - b) % p = (a % p - b % p) % p
(a * b) % p = (a % p * b % p) % p
但对于除法却不成立,即(a / b) % p 不等于 (a % p / b % p) % p 。

为何乘法逆元成立证明

 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int nn=100010,mod=1e9+7;
int fact[nn],infact[nn];
int qmi(int a,int k,int p){
    int ans=1;
    while(k){
        if(k&1)ans=ans*(ll)a%mod;
        k>>=1;
        a=a*(ll)a%p;
    }
    return ans;
}
int main(){
    fact[0]=infact[0]=1;
    for (int i=1;i<nn;i++){//预处理
        fact[i]=(ll)fact[i-1]*i%mod;
        infact[i]=(ll)infact[i-1]*qmi(i,mod-2,mod)%mod;
    }
    int n;
    cin>>n;
    while(n--){
        int a,b;
        cin>>a>>b;
        printf("%d\n", (ll)fact[a] * infact[b] % mod * infact[a - b] % mod);
    }
    return 0;
}

LUCAS定理求组合数

Lucas定理是用来求 c(n,m) mod p,p为素数的值。

dalao的证明

​​​​​​​ 

#include <iostream>
using namespace std;
typedef long long LL;
LL power (LL a,LL b,LL p) {
    LL ans = 1;
    while (b) {
        if (b & 1) ans = ans * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return ans;
}
LL C (LL n,LL m,int p) {
    LL ans = 1;
    // C (n,m) = n * (n - 1) * ... * (n - m + 1) * inv (m) * inv (m - 1) * ... * inv (1);
    for (int i = 1,j = n;i <= m;i++,j--) ans = ans * j % p * power (i,p - 2,p) % p;
    return ans;
}
LL lucas (LL n,LL m,int p) {
    if (n < p && m < p) return C (n,m,p);
    return C (n % p,m % p,p) * lucas (n / p,m / p,p) % p;
}
int main () {
    int T;
    cin >> T;
    while (T--) {
        LL n,m;
        int p;
        cin >> n >> m >> p;
        cout << lucas (n,m,p) << endl;
    }
    return 0;
}

求组合数4.高精乘

过程:

  • 筛素数
  • 求每个素数在分解质因数时出现的次数
  • 用高精乘吧所有质因子乘上

acwing优秀题解 

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int N=5010;
int primes[N],cnt;
int sum[N];
bool st[N];
void pr(int n){
	for(int i=2;i<=n;i++){
		if(!st[i])primes[cnt++]=i;
		for(int j=0;primes[j]<=n/i;j++){
			st[primes[j]*i]=1;
			if(i%primes[j]==0)break;
		}
	}
}
int get(int n,int p){
	int ans=0;
	while(n){
		ans+=n/p;
		n/=p;
	}
	return ans;
}
vector<int> gj(vector<int>a,int b){
	vector<int>c;
	int t=0;
	for(int i=0;i<a.size();i++){
		t+=a[i]*b;
		c.push_back(t%10);
		t/=10;
	}
	while(t){
		c.push_back(t%10);
		t/=10;
	}
	return c;
}
int main(){
	int a,b;
	cin>>a>>b;
	pr(a);
	for(int i=0;i<cnt;i++){
		int p=primes[i];
		sum[i]=get(a,p)-get(a-b,p)-get(b,p);
	}
	vector<int> ans;
	ans.push_back(1);
	for(int i=0;i<cnt;i++){
		for(int j=0;j<sum[i];j++){
			ans=gj(ans,primes[i]);
		} 
	}
	for(int i=ans.size()-1;i>=0;i--)printf("%d",ans[i]);
	puts("");
	return 0; 
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值