spark消费kafka的两种方式

Spark-Streaming获取kafka数据的两种方式Receiver与Direct

一、基于Receiver的方式

这种方式使用Receiver来获取数据。Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的(如果突然数据暴增,大量batch堆积,很容易出现内存溢出的问题),然后Spark Streaming启动的job会去处理那些数据。
然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。

需要注意的要点

1、Kafka中的topic的partition,与Spark中的RDD的partition是没有关系的。所以,在KafkaUtils.createStream()中,提高partition的数量,只会增加一个Receiver中,读取partition的线程的数量。不会增加Spark处理数据的并行度。
2、可以创建多个Kafka输入DStream,使用不同的consumer group和topic,来通过多个receiver并行接收数据。

3、如果基于容错的文件系统,比如HDFS,启用了预写日志机制,接收到的数据都会被复制一份到预写日志中。因此,在KafkaUtils.createStream()中,设置的持久化级别是StorageLevel.MEMORY_AND_DISK_SER。

二、基于Direct的方式

这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。
这种方式有如下优点:
1、简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。
2、高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。
3、一次且仅一次的事务机制:

对比:

基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。

基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。

在实际生产环境中大都用Direct方式

maven依赖

<dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>1.6.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>1.6.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka_2.11</artifactId>
            <version>1.6.1</version>
        </dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

完整测试代码

import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka._
/**
  * Created by Administrator on 2017/6/16.
  */
object KafkaConsumer {

  val numThreads = 1
  val topics = "mytest"
  val zkQuorum = "192.168.1.115:2181"
  val group = "consumer1"
  val brokers = "192.168.1.115:9092"



  def main(args: Array[String]): Unit = {
    createstream
  }

  /**
    *bin/kafka-console-producer.sh –broker-list localhost:9092 –topic mytest
    */
  def createstream()={
    val conf = new SparkConf().setAppName("kafka test").setMaster("local[2]")
    val ssc = new StreamingContext(conf,Seconds(10));

    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
    val words = lines.flatMap(_.split(" ")).map(x=>(x,1))
    words.reduceByKey(_ + _).print()
    ssc.start()
    ssc.awaitTermination()
  }


  def direct()={
    val conf = new SparkConf().setMaster("local[2]").setAppName("kafka test")
    val ssc = new StreamingContext(conf,Seconds(10))
    val topicsSet = topics.split(",").toSet
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, topicsSet)
    val lines = messages.map(_._2)
    val words = lines.flatMap(_.split(" ")).map(x=>(x,1))

    words.reduceByKey(_ + _).print()
    ssc.start()
    ssc.awaitTermination()
  }
}
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
该资源真实可靠,代码都经测试过,能跑通。 快速:Apache Spark以内存计算为核心。 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算完整的生态圈。只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速。存储层:HDFS作为底层存储,Hive作为数据仓库 (Hive Metastore:Hive管理数据的schema) 离线数据处理:SparkSQL (做数据查询引擎<===> 数据ETL) 实时数据处理:Kafka + Spark Streaming 数据应用层:MLlib 产生一个模型 als算法 数据展示和对接:Zeppelin 选用考量: HDFS不管是在存储的性能,稳定性 吞吐量 都是在主流文件系统中很占有优势的 如果感觉HDFS存储还是比较慢,可以采用SSD硬盘等方案。存储模块:搭建和配置HDFS分布式存储系统,并Hbase和MySQL作为备用方案。 ETL模块:加载原始数据,清洗,加工,为模型训练模块 和 推荐模块 准备所需的各种数据。 模型训练模块:负责产生模型,以及寻找最佳的模型。 推荐模块:包含离线推荐和实时推荐,离线推荐负责把推荐结果存储到存储系统中实时推荐负责产生实时的消息队列,并且消费实时消息产生推荐结果,最后存储在存储模块中。 数据展示模块:负责展示项目中所用的数据。 数据流向:数据仓库怎么理解?两种东西,其一是IBM微软数据产品为代表的,其二是Hadoop+Hive+Apache Hive数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集。 可以将结构投影到已经存储的数据上。 提供了命令行工具和JDBC驱动程序以将用户连接到Hive。
该资源真实可靠,代码都经测试过,能跑通。 快速:Apache Spark以内存计算为核心。 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算完整的生态圈。只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速。存储层:HDFS作为底层存储,Hive作为数据仓库 (Hive Metastore:Hive管理数据的schema) 离线数据处理:SparkSQL (做数据查询引擎<===> 数据ETL) 实时数据处理:Kafka + Spark Streaming 数据应用层:MLlib 产生一个模型 als算法 数据展示和对接:Zeppelin 选用考量: HDFS不管是在存储的性能,稳定性 吞吐量 都是在主流文件系统中很占有优势的 如果感觉HDFS存储还是比较慢,可以采用SSD硬盘等方案。存储模块:搭建和配置HDFS分布式存储系统,并Hbase和MySQL作为备用方案。 ETL模块:加载原始数据,清洗,加工,为模型训练模块 和 推荐模块 准备所需的各种数据。 模型训练模块:负责产生模型,以及寻找最佳的模型。 推荐模块:包含离线推荐和实时推荐,离线推荐负责把推荐结果存储到存储系统中实时推荐负责产生实时的消息队列,并且消费实时消息产生推荐结果,最后存储在存储模块中。 数据展示模块:负责展示项目中所用的数据。 数据流向:数据仓库怎么理解?两种东西,其一是IBM微软数据产品为代表的,其二是Hadoop+Hive+Apache Hive数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集。 可以将结构投影到已经存储的数据上。 提供了命令行工具和JDBC驱动程序以将用户连接到Hive。
该资源真实可靠,代码都经测试过,能跑通。 快速:Apache Spark以内存计算为核心。 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算完整的生态圈。只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速。存储层:HDFS作为底层存储,Hive作为数据仓库 (Hive Metastore:Hive管理数据的schema) 离线数据处理:SparkSQL (做数据查询引擎<===> 数据ETL) 实时数据处理:Kafka + Spark Streaming 数据应用层:MLlib 产生一个模型 als算法 数据展示和对接:Zeppelin 选用考量: HDFS不管是在存储的性能,稳定性 吞吐量 都是在主流文件系统中很占有优势的 如果感觉HDFS存储还是比较慢,可以采用SSD硬盘等方案。存储模块:搭建和配置HDFS分布式存储系统,并Hbase和MySQL作为备用方案。 ETL模块:加载原始数据,清洗,加工,为模型训练模块 和 推荐模块 准备所需的各种数据。 模型训练模块:负责产生模型,以及寻找最佳的模型。 推荐模块:包含离线推荐和实时推荐,离线推荐负责把推荐结果存储到存储系统中实时推荐负责产生实时的消息队列,并且消费实时消息产生推荐结果,最后存储在存储模块中。 数据展示模块:负责展示项目中所用的数据。 数据流向:数据仓库怎么理解?两种东西,其一是IBM微软数据产品为代表的,其二是Hadoop+Hive+Apache Hive数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集。 可以将结构投影到已经存储的数据上。 提供了命令行工具和JDBC驱动程序以将用户连接到Hive。
该资源真实可靠,代码都经测试过,能跑通。 快速:Apache Spark以内存计算为核心。 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算完整的生态圈。只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速。存储层:HDFS作为底层存储,Hive作为数据仓库 (Hive Metastore:Hive管理数据的schema) 离线数据处理:SparkSQL (做数据查询引擎<===> 数据ETL) 实时数据处理:Kafka + Spark Streaming 数据应用层:MLlib 产生一个模型 als算法 数据展示和对接:Zeppelin 选用考量: HDFS不管是在存储的性能,稳定性 吞吐量 都是在主流文件系统中很占有优势的 如果感觉HDFS存储还是比较慢,可以采用SSD硬盘等方案。存储模块:搭建和配置HDFS分布式存储系统,并Hbase和MySQL作为备用方案。 ETL模块:加载原始数据,清洗,加工,为模型训练模块 和 推荐模块 准备所需的各种数据。 模型训练模块:负责产生模型,以及寻找最佳的模型。 推荐模块:包含离线推荐和实时推荐,离线推荐负责把推荐结果存储到存储系统中实时推荐负责产生实时的消息队列,并且消费实时消息产生推荐结果,最后存储在存储模块中。 数据展示模块:负责展示项目中所用的数据。 数据流向:数据仓库怎么理解?两种东西,其一是IBM微软数据产品为代表的,其二是Hadoop+Hive+Apache Hive数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集。 可以将结构投影到已经存储的数据上。 提供了命令行工具和JDBC驱动程序以将用户连接到Hive。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值