/* (程序头部注释开始)
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院学生
* All rights reserved.
* 文件名称:实现分数的加法运算。
* 作 者: 刘向一
* 完成日期:
* 版 本 号: V1.0
* 对任务及求解方法的描述部分
* 输入描述:
* 问题描述:
* 程序输出:
* 程序头部的注释结束
*/
public class experiment {
public static void main(String[] args) {
// TODO Auto-generated method stub
fracAdd(1,5,7,20);//结果为:11/20
//fracSub(1,5,7,20);//分数相减
//fracMul(1,5,7,20);//分数相乘
//fractDiv(1,5,7,20);//分数相除
}
static void fracAdd(int first_numerator,int first_denominator,int second_numrator,int second_denominator){
//以下代码能够在控制台上显示结果
int numerator,demominator,Least_common_multiple,Greatest_common_divisor;
//需要调用求最小公倍数的函数
Least_common_multiple = lcm(first_denominator,second_denominator);//求出最小公倍数
numerator = (Least_common_multiple/first_denominator)*first_numerator + (Least_common_multiple/second_denominator)*second_numrator;//求出两分数相加后的分子
//需要调用求最大公约数的函数
Greatest_common_divisor = gcd(Least_common_multiple,numerator);//求出最大公约数
numerator = numerator / Greatest_common_divisor;//求出化简后的分子
demominator =Least_common_multiple / Greatest_common_divisor;//求出化简后的分母
System.out.println(first_numerator+"/"+first_denominator+"+"+second_numrator+"/"+second_denominator+"="+numerator+"/"+demominator);//输出相加化简后的分数
}
static int gcd(int m,int n){
int i = 2;//定义循环控制变量
int Least_common_multiple = 1;//求最大公约数
int min = min(m,n);
while(i<=min)
{
while(m%i==0&&n%i==0)//求分子分母共同的公约数
{
m=m/i;
n=n/i;
min = min(m,n);
Least_common_multiple = Least_common_multiple * i;
}
++i;
}
return Least_common_multiple;
}
static int lcm(int m,int n){
int Greatest_common_divisor = gcd(m,n);//求最大公约数
int Least_common_multiple =(m/Greatest_common_divisor)*(n/Greatest_common_divisor)*Greatest_common_divisor;//最小公倍数与最大公约数有一定关系
return Least_common_multiple;
}
static int min(int m,int n){
int min;
if(m>n)
{
min=n;
}
else
{
min = m;
}
return min;
}
}
运行结果:1/5+7/20=11/20