oracle分析函数——over

原文见我得博客:点击打开链接


1、分析函数:

1)分析函数:

Oracle从8.1.6开始提供分析函数,专门用于解决复杂报表统计需求的功能强大的函数,它可以在数据中进行分组然后计算基于组的某种统计值,并且每一组的每一行都可以返回一个统计值。分析函数用于计算基于组的某种聚合值

 

它和聚合函数的不同之处是:对于每个组返回多行,而聚合函数对于每个组只返回一行。普通的聚合函数用group by分组,每个分组返回一个统计值而分析函数采用partitionby分组,并且每组每行都可以返回一个统计值。

 

2)开窗函数:

开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化。例如over函数

 

3分析函数的形式

分析函数带有一个开窗函数over(),在窗口函数中包含三个分析子句:分组(partitionby), 排序(order by), 窗口(rows) ,他们的使用形式如下:over(partition by xxx order by yyy rows between zzz)

注:窗口子句在这里我只说rows方式的窗口,range方式和滑动窗口也不提

 

例如:统计函数+over()、排序函数+over()、数据分布函数+over()、统计分析函数+over()。


2、开窗函数:

1over(order by col) :可以理解为按照col排序进行累计,orderby是个默认的开窗函数

SQL> select *from t_over;

 

 A

----------

 1

 2

 2

 2

 3

 4

 5

 6

 7

 9

 

10 rows selected.

 

SQL> selecta,avg(a)over(order by a),sum(a)over(order by a) from t_over;

 

 A AVG(A)OVER(ORDERBYA) SUM(A)OVER(ORDERBYA)

------------------------------ --------------------

 1                      1                   1

 2                   1.75                   7

 2                   1.75                   7

 2                   1.75                   7

 3                      2                  10

 4             2.33333333                  14

 5             2.71428571                  19

 6                  3.125                  25

 7             3.55555556                  32

 9                    4.1                  41

 

10 rows selected.

 

2)分区(partition by col):按照col进行分区统计

SQL> selecta,sum(a)over(partition by a) from t_over;

 

 A SUM(A)OVER(PARTITIONBYA)

----------------------------------

 1                          1

 2                          6

 2                          6

 2                          6

 3                          3

 4                          4

 5                          5

 6                          6

 7                          7

 9                          9

 

10 rows selected.

 

3)范围over(order by salary range between 5preceding and 5 following):窗口范围为当前行数据幅度减5加5后的范围内的。

SQL> selecta,sum(a)over(order by a range between 2 preceding and 2 following) from t_over;

 

 ASUM(A)OVER(ORDERBYARANGEBETWEEN2PRECEDINGAND2FOLLOWING)

-----------------------------------------------------------------

 1                                                        10         --  122范围是-13a在这个范围内有12223,所以是10

 2                                                        14

 2                                                        14

 2                                                        14

 3                                                        19

 4                                                        24

 5                                                        25       --  522范围是37a在这个范围内有34567,所以是25

 6                                                        22

 7                                                        27

 9                                                        16       --  922范围是711a在这个范围内有79,所以是16

 

10 rows selected.

 

4)范围over(order by salary rows between 5preceding and 5 following):窗口范围为当前行前后各移动5行。

SQL> selecta,sum(a)over(order by a rows between 2 preceding and 2 following) from t_over;

 

 ASUM(A)OVER(ORDERBYAROWSBETWEEN2PRECEDINGAND2FOLLOWING)

----------------------------------------------------------------

 1                                                        5

 2                                                        7

 2                                                       10

 2                                                       13

 3                                                       16

 4                                                       20

 5                                                       25

 6                                                       31

 7                                                       27

 9                                                       22

 

10 rows selected.

 

5)可以混合使用:

SELECT E.DEPTNO,

       E.EMPNO,

       E.ENAME,

       E.SAL,

       LAST_VALUE(E.SAL)

       OVER(PARTITION BY E.DEPTNO

            ORDER BY E.SAL

              ROWS

            --unbounded preceding and unbounedfollowing针对当前所有记录的前一条、后一条记录,也就是表中的所有记录

            --unbounded:不受控制的,无限的

            --preceding:在...之前

            --following:在...之后

            BETWEEN UNBOUNDED PRECEDING ANDUNBOUNDED FOLLOWING) MAX_SAL

  FROM EMP E;


3、常见分析函数:

• row_number() over(partition by ... order by ...)
• rank() over(partition by ... order by ...)
• dense_rank() over(partition by ... order by ...)
• count() over(partition by ... order by ...)
• max() over(partition by ... order by ...)
• min() over(partition by ... order by ...)
• sum() over(partition by ... order by ...)
• avg() over(partition by ... order by ...)
• first_value() over(partition by ... order by ...)
• last_value() over(partition by ... order by ...)
• lag() over(partition by ... order by ...)
• lead() over(partition by ... order by ...)


1)Row_number函数返回一个唯一的值,当碰到相同数据时,排名按照记录集中记录的顺序依次递增。例如:row_number()over(partition by col1 orderby col2)表示根据col1分组,在分组内部根据col2排序,而此函数计算的值就表示每组内部排序后的顺序编号(组内连续的唯一的)。

 

与rownum的区别在于:使用rownum进行排序的时候是先对结果集加入伪列rownum然后再进行排序,而此函数在包含排序从句后是先排序再计算行号码。row_number()和rownum差不多,功能更强一点(可以在各个分组内从1开始排序)。

 

2)Dense_rank函数返回一个唯一的值,除非当碰到相同数据时,此时所有相同数据的排名都是一样的。

 

3)Rank函数返回一个唯一的值,除非遇到相同的数据时,此时所有相同数据的排名是一样的,同时会在最后一条相同记录和下一条不同记录的排名之间空出排名。

 

SQL> select region_id, customer_id, sum(customer_sales) total,

  2         rank() over(order by sum(customer_sales) desc) rank,

  3         dense_rank() over(order by sum(customer_sales) desc) dense_rank,

  4         row_number() over(order by sum(customer_sales) desc) row_number

  5    from user_order

  6   group by region_id, customer_id;

 

 REGION_ID CUSTOMER_ID      TOTAL       RANK DENSE_RANK ROW_NUMBER

---------- ----------- ---------- ---------- ---------- ----------

            

         8          18                1253840         11         11         11

         5           2                 1224992         12         12         12

         9          23                1224992         12         12         13

         9          24                1224992         12         12         14

        10          30               1216858         15           13            15

    

30 rows selected.


first_value() last_value()

  • FIRST_VALUE 返回组中数据窗口的第一个值
  • LAST_VALUE   返回组中数据窗口的最后一个值


lag()lead():

 Lag和Lead函数可以在一次查询中取出同一字段的前N行的数据和后N行的值。

语法:lag(exp_str,offset,defval) over()

  • exp_str 是要做对比的字段
  • offset 是exp_str字段的偏移量 比如说 offset 为2 则 拿exp_str的第一行和第三行对比,第二行和第四行,依次类推,offset的默认值为1!
  • defval是当该函数无值可用的情况下返回的值。Lead函数的用法类似。


原文见我得博客:点击打开链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赶路人儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值