
AI
文章平均质量分 80
蚊子爱喝水
欢迎来到我的博客!我是一名热衷于PHP开发的程序员。在这个博客里,我将分享我在PHP开发过程中的经验、技巧、见解和学习心得。无论您是PHP初学者还是经验丰富的开发者,我相信您都能在这里找到有价值的内容。
展开
-
42k+ Star 爆款!全网顶尖 MCP 资源库终极合集
近期 GitHub 热门项目 awesome-mcp-servers 强势出圈!该项目以「3000+ 开源 MCP 服务器资源库」为核心,短时间内迅速斩获 42k+ Star,成为开发者争相收藏的宝藏清单。无论是技术选型、学习参考还是部署实践,这份「全网最全 MCP 服务器指南」均已实现一站式覆盖,堪称 MCP 生态领域的资源天花板。原创 2025-04-25 16:37:40 · 500 阅读 · 0 评论 -
Meta发布Llama4系列大模型,开源社区迎新王冠
Meta Llama4系列通过混合专家架构、多模态能力和超低成本,展现了开源AI模型的强大竞争力。其技术突破不仅巩固了Meta在AI领域的领先地位,也为行业提供了可复用的技术范本。随着Behemoth的发布临近,全球AI竞赛或将进入新的“万亿参数时代”。原创 2025-04-08 14:02:01 · 897 阅读 · 0 评论 -
DeepEP库开源啦!DeepSeek优化GPU通信,破算力瓶颈。
DeepSeek开源DeepEP全栈通信库,优化GPU间信息传输,缓解算力焦虑。原创 2025-02-27 14:32:06 · 445 阅读 · 0 评论 -
LangChain+RAG+Agent本地部署DeepSeek-R1商用级知识库,完美实现低代码可视化流程编排
知识库整个系统的核心逻辑在于:1.使用 LangChain 封装的模型实例通过 get_model_instance_by_model_user_id、embed_query、invoke 以及 stream 等方法,实现 LLM 整体调用,无缝对接大语言模型推理服务。2.构造上下文和消息列表利用 HumanMessage、SystemMessage 等消息类型将系统提示、历史对话、用户输入等进行整合,作为调用 LLM 的输入。3.调用向量库进行语义检索。转载 2025-02-22 09:41:03 · 212 阅读 · 0 评论 -
为什么Transformer的编码器和解码器如此重要?一文带你读懂
Transformer 模型是一种基于自注意力(self-attention)机制的深度学习模型,最初是为了解决自然语言处理(NLP)中的序列到序列(sequence-to-sequence)任务而提出的,如机器翻译。Transformer 由编码器和解码器两部分组成,两者都基于相同的自注意力机制,但它们在功能和使用上有所不同。原创 2024-06-21 11:40:18 · 1935 阅读 · 0 评论 -
深入解析大语言模型系列:Transformer架构的原理与应用
Transformer 作为一种革命性的神经网络架构,通过引入注意力机制,解决了传统模型在处理序列数据时的诸多问题。其并行处理能力、长距离依赖捕捉能力,使得它在大语言模型中的应用大放异彩。从机器翻译到文本生成,再到语义理解,Transformer 正在引领 NLP 领域的创新和发展。原创 2024-06-21 11:21:59 · 3123 阅读 · 0 评论 -
通俗易懂的ChatGPT的原理简介
ChatGPT是OpenAI公司开发的一款基于自然语言处理(NLP)技术的聊天机器人。它可以像人类一样进行自然而流畅的对话,回答各种问题,甚至参与一些创造性的任务,如写作、编程等。ChatGPT是一种基于自然语言处理技术的聊天机器人,它通过Transformer架构和无监督预训练技术实现了自然流畅的对话功能。ChatGPT的工作原理包括数据收集与预处理、Transformer架构、无监督预训练和微调与对话生成等步骤。它具有自然流畅、多样性、上下文感知和持续学习等特点,并在多个领域得到了广泛应用。原创 2024-06-21 11:11:17 · 832 阅读 · 0 评论 -
吴恩达《Machine Learning Yearning》完整中文版开源
《Machine Learning Yearning》是吴恩达历时两年,根据自己多年实践经验整理出来的一本机器学习、深度学习实践经验宝典。作为一本 AI 实战圣经,本书主要教你如何在实践中使机器学习算法的实战经验。Github:https://github.com/deeplearning-ai/machine-learning-yearning-cn在线阅读:https://deep...原创 2019-10-21 10:39:07 · 1471 阅读 · 0 评论