数论 Lucas定理 hdu3037

对于C(n, m) mod p。这里的n,m,p(p为素数)都很大的情况。就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了。

这里用到Lusac定理


A、B是非负整数。

AB写成p进制:

A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。
则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  mod p同余

即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) 


For non-negative integers m and n and a prime p, the following congruence relation holds:

\binom{m}{n}\equiv\prod_{i=0}^k\binom{m_i}{n_i}\pmod p,

where

m=m_kp^k+m_{k-1}p^{k-1}+\cdots +m_1p+m_0,

and

n=n_kp^k+n_{k-1}p^{k-1}+\cdots +n_1p+n_0

are the base p expansions of m and n respectively.

 

 对于单独的C(ni, mi) mod p,已知C(n, m) mod p = n!/(m!(n - m)!) mod p。显然除法取模,这里要用到m!(n-m)!的逆元。

根据费马小定理

已知(a, p) = 1,则 ap-1 ≡ 1 (mod p),  所以 a*ap-2 ≡ 1 (mod p)。

也就是 (m!(n-m)!)关于p的逆元为 (m!(n-m)!)p-2 ;


定义:
满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。

为什么要有乘法逆元呢?
当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。
我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,即(a*k) mod p。其结果与(a/b) mod p等价。

证:(其实很简单。。。)
根据b*k≡1 (mod p)有b*k=p*x+1。
k=(p*x+1)/b。
把k代入(a*k) mod p,得:
(a*(p*x+1)/b) mod p
=((a*p*x)/b+a/b) mod p
=[((a*p*x)/b) mod p +(a/b)] mod p
=[(p*(a*x)/b) mod p +(a/b)] mod p
//p*[(a*x)/b] mod p=0
所以原式等于:(a/b) mod p


hdu 3037

将不大于m颗种子存放在n颗树中,问有多少种存法。

首先是不大于m颗种子,我没可以认为少于m的那些种子存放在了第n+1颗树上,这样的话,问题就转化成了将m颗种子存放在n+1颗树上的方案数。ok这个是组合数学里面的公式,亦即插板法,也就是X1+X2+X3+……+Xn+1 = m;ok,答案是C(n+m,m);

然后就是上面说的Lucas定理解决大组合数问题了

1 <= n, m <= 1000000000, 1 < p < 100000


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

typedef long long LL;
using namespace std;

LL exp_mod(LL a, LL b, LL p) { //快速幂
    LL res = 1;
    while(b != 0) {
        if(b&1) res = (res * a) % p;
        a = (a*a) % p;
        b >>= 1;
    }
    return res;
}

LL Comb(LL a, LL b, LL p) {
    if(a < b)   return 0;
    if(a == b)  return 1;
    if(b > a - b)   b = a - b;

    LL ans = 1, ca = 1, cb = 1;
    for(LL i = 0; i < b; ++i) {
        ca = (ca * (a - i))%p;
        cb = (cb * (b - i))%p;
    }
    ans = (ca*exp_mod(cb, p - 2, p)) % p;   //乘法逆元的应用
    return ans;
}

LL Lucas(int n, int m, int p) {
     LL ans = 1;

     while(n&&m&&ans) {
        ans = (ans*Comb(n%p, m%p, p)) % p;  //Lucas的应用
        n /= p;
        m /= p;
     }
     return ans;
}

int main() {
    LL n, m, p;
    int t;
    scanf("%d",&t);
    while(t--) {
        scanf("%lld%lld%lld", &n, &m, &p);
        printf("%lld\n", Lucas(n+m, m, p));
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值