题目
Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.
Example 1:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
思路与解法
这道题的题意比较容易理解,就是让我们判断s1和s2是否可以交叉组合得到s3。也即从s3中找到子序列s1,并且剩下的子序列构成s2(字符相对顺序不改变)。
这道题目可以利用动态规划的思想来解决。首先,我们定义以下数据:dp[i][j]
:表示s1[0:i]和s2[0:j]能否构成s3[0:i+j]。
定义好了数据结构,我们发现递推关系也比较容易确认,如下所示:
# 注意s1[i-1]表示s1的第i个字符;s3[i+j-1]表示s3的第i+j个字符;s2[j-1]表示s2的第j个字符
dp[i][j] = dp[i-1][j] && s1[i-1] == s3[i+j-1] || dp[i][j-1] && s2[j-1] == s3[i+j-1]
代码实现
func isInterleave(s1 string, s2 string, s3 string) bool {
if s1 == "" && s2 == "" && s3 == "" {
return true
}
s1Len, s2Len, s3Len := len(s1), len(s2), len(s3)
if s1Len + s2Len != s3Len {
return false
}
// 生成二维数组(s1Len+1)*(s2Len+1)
dp := make([][]bool, 0)
for i:=0; i<=s1Len; i++ {
slice := make([]bool, s2Len+1)
dp = append(dp, slice)
}
// 初始化,此过程比较重要,因为这是递推的起点
// 当j==0时,定义dp[i][0]
for i:=1; i<=s1Len; i++ {
if s1[i-1] == s3[i-1] {
dp[i][0] = true
} else {
break
}
}
// 当i==0时,定义dp[0][j]
for i:=1; i<=s2Len; i++ {
if s2[i-1] == s3[i-1] {
dp[0][i] = true
} else {
break
}
}
// 进行递推,获得dp[s1Len][s2Len],注意下标
for i:=1; i<=s1Len; i++ {
for j:=1; j<=s2Len; j++ {
if (dp[i-1][j] && s1[i-1] == s3[i+j-1]) || (dp[i][j-1] && s2[j-1] == s3[i+j-1]) {
dp[i][j] = true
}
}
}
return dp[s1Len][s2Len]
}
测试结果
注意,当输入s1,s2,s3都为空值时,我们的递推关系不能得到正确的结果,返回的dp[0][0]默认为false。所以,在此我加了一步特判。