最大公因数gcd 和 最小公倍数lcm

求两个数的最小公倍数,可以利用gcd算法求出最大公约数,然后两个数相乘后再除最大公约数 即为最小公倍数,代码如下:

#include <iostream>
using namespace std;
 
int gcd(int a, int b){
	int r;
	while(b){//使用while循环
		r=a%b;
		a=b;
		b=r;
	}
	return a;
}

/*
int gcd(int a,int b) {
      return b>0 ? gcd(b,a%b):a;//使用三目运算符
}
*/

 
int lcm(int a,int b){
	return a*b/gcd(a,b);
    //这个不一定对,因为lcm函数用a*b/gcd(a,b)可能会导致溢出,最好还是先除法再乘法 
} 
 
int main(){
	int a=12,b=16;
	cout<<gcd(a,b)<<endl;
	cout<<lcm(a,b);
	return 0;
} 

这是一道例题

gcd函数简介

最大公因数(英语:highest common factor,hcf)也称最大公约数(英语:greatest common divisor,gcd)是数学词汇,指能够整除多个整数的最大正整数。而多个整数不能都为零。例如8和12的最大公因数为4。

求两个整数最大公约数主要的方法:
1.穷举法:分别列出两整数的所有约数,并找出最大的公约数。
2.素因数分解:分别列出两数的素因数分解式,并计算共同项的乘积。
3.短除法:两数除以其共同素因数,直到两数互素时,所有除数的乘积即为最大公约数。
4.辗转相除法:两数相除,取余数重复进行相除,直到余数为0时,前一个除数即为最大公约数。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值