求两个数的最小公倍数,可以利用gcd算法求出最大公约数,然后两个数相乘后再除最大公约数 即为最小公倍数,代码如下:
#include <iostream>
using namespace std;
int gcd(int a, int b){
int r;
while(b){//使用while循环
r=a%b;
a=b;
b=r;
}
return a;
}
/*
int gcd(int a,int b) {
return b>0 ? gcd(b,a%b):a;//使用三目运算符
}
*/
int lcm(int a,int b){
return a*b/gcd(a,b);
//这个不一定对,因为lcm函数用a*b/gcd(a,b)可能会导致溢出,最好还是先除法再乘法
}
int main(){
int a=12,b=16;
cout<<gcd(a,b)<<endl;
cout<<lcm(a,b);
return 0;
}
这是一道例题
gcd函数简介
最大公因数(英语:highest common factor,hcf)也称最大公约数(英语:greatest common divisor,gcd)是数学词汇,指能够整除多个整数的最大正整数。而多个整数不能都为零。例如8和12的最大公因数为4。
求两个整数最大公约数主要的方法:
1.穷举法:分别列出两整数的所有约数,并找出最大的公约数。
2.素因数分解:分别列出两数的素因数分解式,并计算共同项的乘积。
3.短除法:两数除以其共同素因数,直到两数互素时,所有除数的乘积即为最大公约数。
4.辗转相除法:两数相除,取余数重复进行相除,直到余数为0时,前一个除数即为最大公约数。