题目描述
输入一组勾股数 a , b , c ( a ≠ b ≠ c ) a,b,c(a\neq b\neq c) a,b,c(a=b=c),用分数格式输出其较小锐角的正弦值。(要求约分。)
输入格式
一行,包含三个正整数,即勾股数 a , b , c a,b,c a,b,c(无大小顺序)。
输出格式
一行,包含一个分数,即较小锐角的正弦值
样例输入
3 5 4
样例输出
3/5
提示
数据保证: a , b , c a,b,c a,b,c 为正整数且 ∈ [ 1 , 1 0 9 ] \in [1,10^9] ∈[1,109]。
参考代码
//勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
/*直角三角形的最小正弦值最大的情况是,等腰直角三角形,45度角。直角边最大是斜边/1.414。
数据范围:边最大值是 1000 000 000,1000 000 000/1.414 = 707,213,578, 约为7*10的8次方,按理说超时风险很大。但题目测试数据能通过。
*/
#include<iostream>
using namespace std;
int main() {
//直角三角形的最小正弦值 = 最短边/最长边
//将三边排序后,输出最小值/最大值即可,注意:要求约分
int a, b, c;
cin >> a >> b >> c;
if (a > b) swap(a, b);
if (b > c) swap(b, c);
if (a > b) swap(a, b);
//除掉a、c之间的最大公约数
for (int i = a; i > 1; i--) {
//第一个能除尽的数,一定是最大公约数
if (a % i == 0 && c % i == 0) {
a /= i;
c /= i;
break;
}
}
cout << a << "/" << c;
return 0;
}
参考代码2
//[最大公约数](https://baike.baidu.com/item/%E6%9C%80%E5%A4%A7%E5%85%AC%E7%BA%A6%E6%95%B0/869308?fromModule=lemma_inlink)
//[辗转相除法(欧几里得算法)](https://baike.baidu.com/item/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AE%97%E6%B3%95/1647675?fromtitle=%E8%BE%97%E8%BD%AC%E7%9B%B8%E9%99%A4%E6%B3%95&fromid=4625352&fr=aladdin)
*/
#include<iostream>
using namespace std;
int main() {
//直角三角形的最小正弦值 = 最短边/最长边
//将三边排序后,输出最小值/最大值即可,注意:要求约分
int a, b, c;
cin >> a >> b >> c;
//将a,b,c从小到大排序
if (a > b) swap(a, b);
if (b > c) swap(b, c);
if (a > b) swap(a, b);
//辗转相除法计算a和c的最大公约数
int n = a, m = c;
while (n > 0) {
int r = m % n;
m = n;
n = r;
}
//while循环结束后,m的值就是最大公约数
//除掉a、c之间的最大公约数 m
a /= m;
c /= m;
cout << a << "/" << c;
return 0;
}