[python]解析通达信盘后数据获取历史日线数据

转自:http://bbs.pinggu.org/forum.php?mod=viewthread&tid=4804415&page=1

平时我们在做 离线的模型 回溯测试时候,需要历史的k线数据。

可是通达信 的日线数据如下:
日线数据在

 

通达信的安装目录: vipdoc\sh\lday  下面

 

本地的通达信 是没有开放api和外部的  自己的交易回溯测试 工具或框架 进行交互的。

虽然 我们也可以  通过 sina 的api ,或者 yahoo,或者 juhe聚合数据,或者 wind 或者 tushare (http://tushare.org/index.html),或者 通联金融大数据  等 网络的api接口 获取  股票的 历史K线数据,  但是网络的开销总是会比较耗时一些。

其实可以通过 python来 解析 通达信  的这些 day 文件的数据,变成 我们熟悉的csv格式的数据。

 

#!/usr/bin/python  
def exactStock(fileName, code):
    ofile = open(fileName,'rb')
    buf=ofile.read()
    ofile.close()
    num=len(buf)
    no=num/32
    b=0
    e=32
    items = list() 
    for i in range(int(no)):
        a=unpack('IIIIIfII',buf[b:e])
        year = int(a[0]/10000);
        m = int((a[0]%10000)/100);
        month = str(m);
        if m <10 :
            month = "0" + month;
        d = (a[0]%10000)%100;
        day=str(d);
        if d< 10 :
            day = "0" + str(d);
        dd = str(year)+"-"+month+"-"+day
        openPrice = a[1]/100.0
        high = a[2]/100.0
        low =  a[3]/100.0
        close = a[4]/100.0
        amount = a[5]
        vol = a[6]
        unused = a[7]
        if i == 0 :
            preClose = close
        ratio = round((close - preClose)/preClose*100, 2)
        preClose = close
        item=[code, dd, str(openPrice), str(high), str(low), str(close), str(ratio), str(amount), str(vol)]
        items.append(item)
        b=b+32
        e=e+32
        
    return items

exactStock('E:\\new_tdx\\vipdoc\\sh\\lday\\sh000001.day',"000001")


然后调用 这个方法,就可以把day文件变成csv文件,方便pandas来处理。


(在调用这个py文件前, 先在通达信的 软件 菜单里面 ,把通达信的 历史日K线数据都下载到本地,一次即可下载整个市场所有股票品种的数据。。)

 

批量处理的,请参考下面脚本

# coding: UTF-8
from struct import *

import os
import sys


    
def day2csv_data(dirname,fname,targetDir):
    ofile=open(dirname+os.sep+fname,'rb')
    buf=ofile.read()
    ofile.close()
     
    ifile=open(targetDir+os.sep+fname+'.csv','w')
    num=len(buf)
    no=num/32
    b=0
    e=32
    line='' 
    linename=str('date')+','+str('open')+', '+str('high')+' ,'+str('low')+', '+str('close')+' ,'+str('amout')+', '+str('vol')+' ,'+str('str07')+''+'\n'
      # print line
    ifile.write(linename)
    # for i in xrange(no):
    for i in range(int(no)):
       a=unpack('IIIIIfII',buf[b:e])
       line=str(a[0])+','+str(a[1]/100.0)+', '+str(a[2]/100.0)+' ,'+str(a[3]/100.0)+', '+str(a[4]/100.0)+' ,'+str(a[5])+', '+str(a[6])+' ,'+str(a[7])+''+'\n'
      # print line
       ifile.write(line)
       b=b+32
       e=e+32
    ifile.close()
    


# pathdir='/vipdoc/sh/lday'
pathdir='X:\\股票\\解析通达信day日线数据\\day'
# targetDir='/_python_gp_tdx/data_gupiao/sh/lday'
targetDir='X:\\股票\\解析通达信day日线数据\\day'
 
listfile=os.listdir(pathdir)
 

for f in listfile:
   
    day2csv_data(pathdir,f,targetDir)
else:
    print ('The for '+pathdir+' to '+targetDir+'  loop is over')
    




调用示例:
pathdir='/vipdoc/sh/lday'
targetDir='/python_data_gupiao/sh/lday'
listfile=os.listdir(pathdir)
for in listfile:
      day2csv_data(pathdir,f,targetDir)

 

最终的效果如下:

 

打开这些文件如下:

是不是很熟悉的csv或者excel的格式。。。

这个格式的数据,


大家就 可以用  python的数据分析的库 pandas 的 pd.read_csv 方法来读取了。

这样速度回比较快,而且python调用 通达信的历史数据 ,就很方便了。

扩展:如何用python读取通达信的lc1文件

2020年10月26日,修正了日期的解析功能。

# 通达信5分钟线*.lc5文件和*.lc1文件
#     文件名即股票代码
#     每32个字节为一个5分钟数据,每字段内低字节在前
#     00 ~ 01 字节:日期,整型,设其值为num,则日期计算方法为:
#                   year=floor(num/2048)+2004;
#                   month=floor(mod(num,2048)/100);
#                   day=mod(mod(num,2048),100);
#     02 ~ 03 字节: 从0点开始至目前的分钟数,整型
#     04 ~ 07 字节:开盘价,float型
#     08 ~ 11 字节:最高价,float型
#     12 ~ 15 字节:最低价,float型
#     16 ~ 19 字节:收盘价,float型
#     20 ~ 23 字节:成交额,float型
#     24 ~ 27 字节:成交量(股),整型
#     28 ~ 31 字节:(保留)

from struct import *
import numpy as np
import pandas as pd

ofile=open('sz000005.lc5','rb')

buf=ofile.read()
ofile.close()

num=len(buf)
no=num//32
# 原来是这样的,在python2中, '整数 / 整数 = 整数',以上面的 100 / 2 就会等于 50, 并且是整数。
# 而在python3中, ‘整数/整数 = 浮点数’, 也就是100 / 2 = 50.0, 不过,使用 '//'就可以达到原python2中'/'的效果。

b=0
e=32
dl = []
for i in range(no):
   a=unpack('hhfffffii',buf[b:e])
   dl.append([str(int(a[0]/2048)+2004)+'-'+str(int(a[0]%2048/100)).zfill(2)+'-'+str(a[0]%2048%100).zfill(2),str(int(a[1]/60)).zfill(2)+':'+str(a[1]%60).zfill(2)+':00',a[2],a[3],a[4],a[5],a[6],a[7]])
   b=b+32
   e=e+32
df = pd.DataFrame(dl, columns=['date','time','open','high','low','close','amount','volume'])
print(df)

 

 

 

 

 

 
<think>好的,用户遇到了Git合并时本地更改会被覆盖的问题,需要解决方案。根据之前的引用资料,解决方法主要有commit、stash和revert三种。首先,我得确认用户的具体情况,比如他们的本地更改是否已经完成,是否需要保留,或者是否可以丢弃。用户可能不太清楚这三种方法的适用场景,需要详细解释每个选项的步骤和优缺点。比如,commit适用于需要保留更改的情况,stash适合临时保存以便后续恢复,而revert则是直接撤销更改,适用于不需要保留的情况。需要结构清晰,分点说明,每个方法都给出操作步骤和适用场景,帮助用户理解哪种情况最适合他们。还要注意使用中文,避免技术术语过于复杂,让用户容易理解。同时,生成相关问题,可能涉及如何恢复stash的内容,或者如何避免频繁冲突等,扩展用户的知识点。另外,要确保LaTeX格式正确,但在这个问题中可能用不上数学公式,所以主要关注代码块和引用标识。检查引用是否正确,比如引用[^1]和[^2]的来源是否相关,用户提供的引用内容是否准确对应解决方案。 最后,确保回答真实可靠,操作步骤准确无误,避免误导用户。可能还需要提醒用户根据具体情况选择方法,比如如果有未完成的实验性代码,stash可能是更好的选择,而如果是确定要保留的修改,则应该commit。</think>要解决Git合并时本地更改被覆盖的问题,可根据不同场景选择以下三种方法: ### 一、提交本地更改(commit) **适用场景**:当本地更改已测试通过且需要保留到版本历史中。 **操作步骤**: 1. 将改动添加到暂存区: ```bash git add . # 添加所有文件 # 或指定文件 git add file1.txt file2.py ``` 2. 提交更改并添加描述: ```bash git commit -m "完成用户登录模块优化" ``` 3. 执行合并操作: ```bash git merge origin/main ``` **优点**:保留完整的开发记录,便于后续追溯[^1]。 ### 二、暂存更改(stash) **适用场景**:需要临时保存未完成的修改(如调试代码),优先处理合并操作。 **操作步骤**: 1. 保存当前工作状态: ```bash git stash # 可选添加备注 git stash save "用户登录模块调试代码" ``` 2. 查看暂存记录列表: ```bash git stash list ``` 3. 合并远程分支: ```bash git merge origin/main ``` 4. 恢复暂存内容: ```bash git stash pop # 恢复并删除最近一次暂存 # 或指定特定暂存 git stash apply stash@{1} ``` **优点**:保持工作目录整洁,特别适合处理紧急合并任务[^2]。 ### 三、撤销本地更改(revert) **适用场景**:本地修改可丢弃(如实验性代码或错误修改)。 **操作步骤**: 1. 撤销所有未提交的修改: ```bash git checkout -- . # 全部文件 # 或指定文件 git checkout -- file1.txt ``` 2. 执行合并操作: ```bash git merge origin/main ``` **风险提示**:此操作不可逆,需确认文件无需保留。 --- ### 对比决策表 | 方法 | 保留记录 | 可恢复性 | 适用阶段 | |---------|----------|----------|------------------| | commit | ✅ | ✅ | 功能开发完成时 | | stash | ❌ | ✅ | 开发中途临时切换 | | revert | ❌ | ❌ | 放弃无效修改 | ### 扩展应用场景 - 当存在多个暂存时,可用`git stash list`查看记录,通过`git stash apply stash@{n}`精准恢复 - 合并后出现冲突时,可使用`git mergetool`可视化工具解决冲突 - 长期分支开发推荐使用`git rebase`保持提交历史线
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值