【Python小技巧】使用prettytable格式化显示dataframe数据 经常我们使用print(df)输出dataframe数据,打印输出的数据没有格式,看起来屏幕一篇乱。有没有一种可以格式化输出的工具?还真有,那就是prettytable。虽然只是一个简单的方法,但可以使我们的表格清晰的展现出来。对于需要检查数据非常的方便。
【Python小技巧】一行conda命令升级Anaconda中python到指定版本 听说python出了新版本,想升级却不知道怎么升级,升哪个版本?python 3.10用着还不错,现在python都出了3.13版本了,而且3.11较之前的版本效率提升不是一点点!但鉴于第三方库的兼容问题,考虑再三,就先升级到3.11版本吧。升级很简单,就是过程很耗时,毕竟需要下载很多包。但还好,一条命令运行后,输入Y确认后就不用管了。好在运行效率确实有提升,一切都值了。这个方法同样适合虚拟环境。只是需要先切换到对应环境。
【Python小技巧】移花接木解决[Errno 2] No such file or directory: ‘matplotlib-3.8.4.dist-info\\METADATA‘问题 安装了anaconda,使用pip安装第三方库,其实就是给anaconda3\Lib\site-packages添加东西而已。如果因为各种原因导致冲突或者误删文件,只要把文件凑齐放到该目录下,问题一般都可以顺利解决。甚至不使用pip命令安装,只需要把其它电脑对应的包安装的目录复制过来也是可以用的,当然这个需要python的版本是一致的。一般还是用pip安装,避免不必要的麻烦,毕竟还有库依赖的问题。好了,就聊到这里。
【量化数据】使用DiskCache高效、持久化存取股票行情信息,彻底解决行情焦虑! 量化交易,数据先行。可你是不是也经常遇到:行情没下载读取不到,下载了读取不够快,直接订阅行情数量又不够,或者速度不够快。那么你可以尝试一下下面这个方法。我们这里只是简单的介绍了DiskCache的一下主要操作和用法,并对量化需要用到的行情信息读写进行了展示,作为基本应用已经足够用了,基本操作也就这些了。在使用了mysql,sqlite,txt,redis,综合速度和持久化,个人更倾向于DiskCache。量化交易,数据先行。
【Python小技巧】使用python一键批量按顺序打印目录下所有文件(pdf,word、图片统统一起打印,不想打印的也可以跳过,限制打印解除限制再打印) 为迎接检查,需要提供很多文件,还要求打印。打印文件本身没什么难度,问题是批量打印文件,文件还在不同目录,目录还套目录,还要求按顺序打印,有pdf文件,还有图片,一个一个文件打开,一个一个点打印,再按顺序归档,这谁记得住啊!不行,我得找python帮忙!以上方法,经过实践,批量打印几千个文件,那就是喝杯咖啡的事儿。别人还在忙着打开目录,打开文件,打印文件,关闭文件,再打开再打印再关闭。你只需要运行一下,就可以去泡杯咖啡去品尝了。只要打印机纸墨管够,剩下的就是打印完去拿回来就完成了。
【Python小技巧】openpyxl读取xlsx文件报错the workbook source files contain some invalid XML的解决办法 目前最终版本是3.1.5,显然大于现在的3.1.2,果断使用pip install openpyxl -U升级openpyxl。升级完成后,再次程序,无论xlsx文件是否存在筛选,读取数据都不再报错且数据读取也没问题。检查openpyxl版本,执行如下命令pip show openpyxl,版本为3.1.2。查看excel文件,发现其中有筛选,去除筛选后再次执行程序,一切OK。一个文件这么去掉筛选没什么,但文件sheet较多,一个一个做有些折腾!另外,这个问题openpyxl应该也发现了吧。
【实践出真知】使用Docusaurus将md文档组织起来就是一个网站(写API文档,写教程、写日记、写博客的有福了) 前段时间,学习Flet,访问到Flet中文网,被其简洁的风格吸引,就想着以后将自己的内容也整理一下。最终发现该网站是用Docusaurus这个工具实现的。以后写API文档,写教程、写日记、写博客有福了,只要写出markdown文档即可。现在包括csdn等很多平台都是md文档。这样移植也非常方便。下面就让我们来认识一下吧。初步探索,后面就可以根据自己的需要补充完善了。不得不说,Docusaurus是真方便,还免费,而且功能强大,是一个不可多得的利器。
【思考】描述曲线走势,使用余弦相似度和pearson相关系数哪个更有效? 描述曲线走势可以使用多种方法,其中余弦相似度和皮尔逊相关系数是两种常用的指标。它们各有优缺点,适用于不同的场景。对于描述曲线走势,皮尔逊相关系数通常更有效,因为它不仅考虑方向,还考虑大小,能够更全面地反映两个时间序列数据之间的线性相关性。而余弦相似度只关注方向,对于大小的变化不敏感,因此在曲线走势分析中不如皮尔逊相关系数有效。在行情里,close也好,ma均线也好,本质都是一个序列值,也就是一组list。一个list也就是一条曲线。你想到了什么?
一招解决conda报错:You have chosen a non-default solver backend > (libmamba) but it was not recognize conda本来就是解决Python运行环境各种复杂的问题,结果还是在这里掉坑里了。还好官方文档给了各种解决思路。以后问题实在解决不了,就多看看官网文档!
【大麦小米学量化】使用一招搞定各种股票代码格式转换(含完整源代码) 在量化实践过程中,经常因为不同库使用不同的股票代码形式,所以需要来回转换股票代码,以符合作业环境。为方便不同形式的要求,现将常用的格式做了函数,方便调用。这个函数考虑了股票常用的各种形式,包括大小写,调用的时候选择相应的kind即可。
【Python小技巧】Python代码中加入对matplotlib版本号的识别,解决窗口最大化过程中调用代码不一致的问题 Python在更新,Python的各种库也在更新,有时候碰到之前的调用方法用不了了,是常有的事儿。这个比较头痛。以后,大家在发现问题后,也要多留一个心,同样的代码运行不了,很可能就是环境不一样了。关键的几个大库,版本一定要匹配。对于版本不一致的问题,如果可以判断版本号,均可以在代码中设置判断语句,以保证代码运行在哪个环境都不报错。如果对你有帮助,就留个赞吧!
【Python小技巧】matplotlib不显示图像竟是numpy惹的祸 Python3.10 使用matplotlib绘图,显示不出图像。首先排除代码的问题,因为使用Python3.8的虚拟环境显示是OK的,换到Python3.10却不行。为什么,折腾了好久,终于让我找到原因了。这里分享一下,希望可以帮助到大家。几经折腾,看来不是Python 3.10 的问题,问题出在各种库的互相配合上。虽然通过虚拟一个低版本的python环境也可以解决matplotlib显示的问题。但作为研究,我们还是要深入一些。
【Anaconda】Anaconda Navigator升级二三事(JSONDecoderError、MultiError、.condarc文件与conda update --force conda) 时间长未升级Anaconda Navigator,想着升级以下,结果报错了,提示JSONDecoderError,郁闷。之后又报错MultiError。反正是各种报错,最后通过命令行搞定。升级过程问题较多,网上的解决办法可以参考,但也要注意查看深层原因,最终解决问题。希望可以帮到各位!
【Anaconda】升级Anaconda Navigator提示JSONDecoderError,删除.condarc文件后搞定 时间长未升级Anaconda Navigator,想着升级以下,结果报错了,提示JSONDecoderError,郁闷。各种尝试,最终搞定,这里分享一些,希望大家可以避坑。有些人在创建Python虚拟环境时如果碰到这个问题,也可以使用如上方法哦!
【大麦小米学量化】使用Python读写通达信自选股(含代码转换及完整源代码),想要通过通达信自选股实现量化自动关联交易的有福了 提示:以下是本篇文章正文内容,下面案例可供参考我们在量化选股的后,有时候需要将股票添加到通达信里使用各种指标再检验检验,但如果有许多代码需要添加,一个一个输入就太low了。这里给大家介绍一种方法,可以将选出的股票批量导入通达信自选股。导入完毕后,在通达信终端打开自选板块就可以直接查看。这里我们以通达信版最新版本(通达信金融终端 V7.642)为例,不同版本自选股文件位置和名称可能不一致,我们可以在安装目录搜索*.blk即可。最近,又折腾起了通达信,为方便自选股操作就写了以上代码。需要的小伙伴可以拿走使用。
【Python小技巧】一招解决Python程序调用文件时的相对路径、绝对路径问题 你有没有碰到,下载了网上python代码,但本地运行时,老是报错文件找不到,调了这行,那行又报错,让人很崩溃!本文教大家一种方法,轻松解决绝对路径、相对路径带来的文件找不到的问题。方法很简单,希望可以帮到你!
【大麦小米学量化】使用迅投QMT客户端定时操作逆回购,再也不担心忘了赚零花钱了(含完整源代码) 前面很多人提到逆回购,但是经常一忙就忘了收盘后下单逆回购,白给的肉又飞了。这里我们使用QMT玩玩逆回购,代码简单,复制到本地,配置好即可运行,收益无负担,送你的钱不要白不要。简单来讲,逆回购从本质上讲是一种短期贷款,就是你把钱借给别人,获得固定利息;别人用债券(国债或企业债)作抵押,到期还本付息。使用xtquant调用迅投MiniQMT客户端定时操作逆回购,再也不担心忘了赚零花钱了(含完整源代码)让更多人可以看到!
【Python小技巧】使用sqlite的内存数据库提高股票行情数据读写(附代码) SQLite 内存中数据库是完全存储在内存中(而不是磁盘上)的数据库。使用特殊数据源文件名 :memory: 可创建内存中数据库。连接关闭后,数据库会被删除。使用 :memory: 时,每个连接都会创建自己的数据库。今天我们介绍了如何在内存中使用sqlite数据库。其中以下分别为不同形式的数据库,有兴趣的可以自行测试,对比读写速度。db = os.path.dirname(os.path.abspath(__file__))+"\\sqlite_stock.db" # 本地文件数据库。