俄数学天才破解庞加莱猜想拒领百万奖金

俄数学天才破解庞加莱猜想拒领百万奖金

2010-03-23 16:36 |  22586次阅读 |  来源:新浪科技   【已有181条评论】发表评论

关键词:数学,破解,佩雷尔曼,庞加莱猜想 |  感谢villa123的提供 |  收藏这篇资讯

北京时间3月23日消息,据英国《每日邮报》报道,俄罗斯数学天才格里高里佩雷尔曼被人们称之为世界上最聪明的人,正是他破解了世界上最大的数学难题之一庞加莱猜想。但出人意料的是,这位数学天才却在22日表示,他并不需要克雷数学研究所颁发的100万美元奖金。

佩雷尔曼住在圣彼得堡一所蟑螂肆虐的公寓,虽然生活条件极其艰苦,但他更喜欢这种隐居的生活。庞加莱猜想困扰了数学家一个多世纪。在得知因破解这一数学难题而获得百万美元奖金之后,佩雷尔曼透过自己紧闭的前门表示:我不需要任何东西。我已经拥有我所希望的一切。

这位留着大胡子的数学天才现年44岁。上周,美国马萨诸塞州剑桥市克雷数学研究所决定将100万美元奖金颁给这位世界上最聪明的人。4年前,也就是将解题方法公布到网上之后,佩雷尔曼便拒绝接受马德里国际数学联合会声望颇高的菲尔兹奖。他当时表示:我对金钱或名望没有丝毫兴趣。我不希望自己像动物园的动物一样成为一件展品。我并不是数学界的英雄。我没有那么成功,这也就是为什么我不希望任何人看到我。

佩雷尔曼的邻居维拉佩特罗维纳说:我去过他的公寓,当时就被震惊了。他只有一张桌子、一把凳子以及一张床,上面的床垫很脏,是以前的房主留下来的。以前的房主是一群酒鬼,他们把公寓卖给了他。我们一直想把公寓楼里的蟑螂消灭干净,但它们都躲在他的公寓里。

2003年,当时还是圣彼得堡斯捷克洛夫研究所研究员的佩雷尔曼开始在网上刊登论文,声称他已经破解了庞加莱猜想。这一猜想是世界七大数学难题之一,克雷数学研究所悬赏100万美元,奖励能够破解这个拓扑难题的人。严格的检验最终证明,佩雷尔曼是正确的。庞加莱猜想是指,在一个三维空间中,假如每条封闭的曲线都能收缩成一点,这个空间一定是一个圆球。

从提出到佩雷尔曼破解,庞加莱猜想的历史已经超过100年。猜想的破解有助于确定宇宙的形状。2003年过后,佩雷尔曼放弃了斯捷克洛夫研究所的工作。媒体援引他朋友的话报道说,他不再从事数学研究工作。这是他心中最大的痛,不愿和任何人谈起。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 庞加莱猜想是一个关于质数的数学难题,提出于1640年代末由数学庞加莱(Pierre de Fermat)。猜想的严谨形式如下: 对于任意整数n>2,如果2^(n-1)≡1(mod n),那么n一定是质数。 迄今为止,庞加莱猜想尚未得到严谨证明。尽管如此,在过去几百年中,数学家们已经证明了庞加莱猜想在许多特殊情况下是正确的,例如当n小于等于3×10^4时,以及当n是满足一些其他条件的数字时。 庞加莱猜想尚未证明或者反证是因为现在已知的证明方法都无法构造出来一个反例 ( Counter Example ) . 其他证明该猜想的方法也还在不断地被探索中. ### 回答2: 庞加莱猜想是20世纪初法国数学家亨利·庞加莱提出的一项重要数学问题,它主要关注于三维欧几里得空间中的拓扑形态。庞加莱猜想假设:“任意一个连续的、有限的、无界的、完整的无法缩减为一点的三维流形都是同胚于三维球面。”为了严谨证明这个猜想,我将介绍一种较为简化的证明方法,由Grigori Perelman在2003年提出的证明思路。 首先,我们需明确庞加莱猜想关注的是三维欧几里得空间中的连续流形。在流形的定义下,我们可以使用微分几何的工具对其进行研究。根据流形的性质,我们可以引入一些关键概念,如曲率、度量等,这些概念有助于我们理解流形的本质。 接下来,我们需要证明的是,任意满足庞加莱猜想所述条件的流形都是同胚于三维球面。这可以通过证明三个关键命题来实现: 命题一:任意满足条件的流形是闭的,即没有边界。这可以通过使用流形的性质以及拓扑学中的一些定理和结果进行推导。 命题二:任意满足条件的流形具有正的平均曲率。通过使用微分几何的工具以及曲率的定义,可以得到该结论。 命题三:任意满足条件的流形是各向同性的,即其各个方向上的特征相同。这一结论来自于流形的平滑性和对称性的推导。 最后,结合以上三个命题,我们可以得出结论:任意满足庞加莱猜想所述条件的三维流形都具有正的平均曲率、各向同性以及闭合,从而可以被同胚于三维球面。 需要注意的是,上述只是一种较为简化的证明思路,并没有涵盖具体的数学推导过程。庞加莱猜想域内仍然存在许多深奥的数学理论和更复杂的证明方法,其中包括拓扑学、微分几何、拓扑三维流形的分类等域的知识和技巧。 ### 回答3: 庞加莱猜想,又称为三维球面上的闭曲线定律或者指环定理,最初由法国数学家亨利·庞加莱于1904年提出。这个猜想表述了,在三维空间中的任意连续曲线都可以缩成一个点,即闭曲线不可以存在自交的情况。 为了证明庞加莱猜想,我们首先需要讨论三维空间的基础概念。在三维空间中,曲线可以用参数方程表示,即 C(t) = (x(t), y(t), z(t)),其中t为参数。 我们在这里引入曲线的长度概念。对于曲线C(t),其长度可以表示为积分形式 L = ∫(t1,t2)√[x'(t)² + y'(t)² + z'(t)²]dt, 其中x'(t),y'(t),z'(t)分别表示C(t)在x、y、z轴上的导数。 接下来,我们假设存在一个闭曲线C,其自交,即曲线上存在两点P和Q,它们相交于点R,如下所示: C(t) = R, P<t<Q。 根据曲线的长度定义,我们可以将曲线从P点开始分成两段曲线,即 C1(t) = (x1(t), y1(t), z1(t)),P<t<R,线段PR; C2(t) = (x2(t), y2(t), z2(t)),R<t<Q,线段RQ。 对于曲线长度来说,我们有 L = L1 + L2 = ∫(t1,R)√[x1'(t)² + y1'(t)² + z1'(t)²]dt + ∫(R,t2)√[x2'(t)² + y2'(t)² + z2'(t)²]dt。 由于C(t)是一个闭曲线,即t1和t2可以取任意值。那么我们可以假设有一个最小长度的情况,使得L最小。在这个最小长度情况下,我们可以通过构造改变曲线C的方法,将C(t)缩成一个点。这与庞加莱猜想的假设相矛盾。 因此,根据最小长度的分析推理,我们得出结论:三维空间中的任意连续闭曲线都可以缩成一个点,即庞加莱猜想成立。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值