双低策略还适用吗?最新市场环境下的策略优化方向

双低策略还适用吗?最新市场环境下的策略优化方向

双低策略的基本逻辑

双低策略的核心是寻找"低市盈率+低市净率"的股票,本质上是价值投资的简化版。前几年这招确实好用,尤其是大盘蓝筹股躺赢的时代,闭着眼睛买低估值股票都能跑赢指数。但最近两年市场风格突变,传统低估值板块像银行、地产反而成了"价值陷阱",市盈率越跌越低。

举个例子,某银行股PE长期在4倍左右徘徊,按传统理论早该反弹,结果股价还能再腰斩。问题出在:市场开始用"未来现金流折现"重新定价,低估值≠低估。

当前市场的三大变化

  1. 利率环境颠覆:美联储加息周期下,全球资产定价锚变了。以前低利率时代撑得起高估值,现在资金成本上来了,PE10倍的股票可能比PE5倍的更安全——因为后者可能是夕阳行业。

  2. 行业分化加剧:新能源和传统能源就是典型。2022年煤炭股PE个位数但持续上涨,光伏龙头PE30倍却阴跌不止。市场愿意为确定性的成长溢价,而不是静态的低估值。

  3. 量化策略的冲击:现在超过40%的A股交易量来自量化基金,它们专门收割传统策略的规律性操作。比如双低策略的调仓时点很容易被量化资金预判,导致买入即高点。

策略优化方向

动态双低公式
把静态PE/PB改成动态指标,比如:

# 伪代码示例  
dynamic_score = (PE_ttm / EPS_growth) + (PB / ROE_5y_avg)  

加入未来12个月盈利预测和行业景气度修正,避免掉入"低估值陷阱"。

行业轮动叠加
单纯看估值数字不如看估值分位数。比如:

  • 消费电子当前PE处于历史10%分位+行业库存周期见底=真便宜
  • 钢铁股PE历史5%分位但需求持续下滑=假便宜

对冲工具应用
用股指期货或期权对冲系统性风险。双低策略最大的问题是beta偏高,遇到熊市照样暴跌。简单对冲方案:

每买入100万双低组合,同时卖出20万市值的沪深300股指期货  

散户实操建议

  • 别死磕银行地产,去看看低估值+高分红的中字头(比如运营商)
  • 把双低作为选股初筛条件,再加人工判断(避开有重大瑕疵的公司)
  • 控制仓位,这类策略现在更适合作为卫星配置而非核心持仓

现在的市场更像一个解谜游戏,光靠捡烟屁股不行了,得学会在打折的好货里挑未来还能用的。

Python中编写一个简单的可转债双低策略的回测代码,通常需要结合pandas库进行数据处理,yfinance库获取股票数据,以及backtrader库进行回测。下面是一个简化的示例: ```python # 导入所需库 import pandas as pd from yahoofinancials import YahooFinancials from backtrader import cerebro, strategy, TimeFrame # 定义策略类 class DoubleLowStrategy(strategy.Strategy): def __init__(self): self.data_rsi = self.datas[0].rsi(14) # 使用RSI指标 self.data_low1 = self.datas[0].low[-60:] # 最近60天最低价 self.data_low2 = self.datas[0].low[-120:] # 最近120天最低价 def next(self): if self.data_low1[-1] < self.data_low2[-1]: # 如果最近60天比120天更低 if self.data_rsi[-1] > 30: # 而且RSI超过30,认为有反弹机会 self.buy() # 买入信号 # 获取可转债数据 yf = YahooFinancials('AAPL.PA') # 替换为你要测试的可转债代码 data = yf.get_historical_price_data(start_date='2020-01-01', end_date='2022-12-31') # 将数据转换成backtrader兼容格式 df = pd.DataFrame(data['prices']) df['datetime'] = pd.to_datetime(df['date'], format='%Y-%m-%d') df.set_index('datetime', inplace=True) data_dict = {'Close': df['close'].values} # 创建回测引擎 cerebro = cerebro() cerebro.addstrategy(DoubleLowStrategy) # 添加数据到引擎 cerebro.adddata(data_dict, name='AAPL', timeframe=TimeFrame.Days) # 开始回测 cerebro.run() # 结果打印 print("总收益:", cerebro.broker.getvalue()) # 相关问题--
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值