SmartBeta策略超额收益来源?因子暴露的代价
SmartBeta不是免费的午餐
很多人以为SmartBeta策略就是"聪明版指数",能稳定跑赢市场。但真相是,它的超额收益本质上来自因子暴露——就像你主动选择站在风口,确实可能飞得更高,但也要承担被吹成傻子的风险。
超额收益的三大源头
- 风险溢价:价值因子赚的是"捡烟蒂"的辛苦钱,低估值股票往往带着各种问题;质量因子赚的是"为确定性付费"的钱,好公司通常不便宜
- 行为偏差:动量因子利用的是散户的"追涨杀跌",低波因子吃定了韭菜们的"过度交易"
- 市场摩擦:小盘股因子受益于机构资金进出的摩擦成本,就像菜市场角落的摊位,虽然不起眼但可能有便宜货
# 简化的因子收益计算示例
import pandas as pd
def calculate_factor_return(stock_returns, factor_exposure):
# 股票收益 = 市场收益 + 因子暴露*因子收益 + 特异收益
factor_premium = np.linalg.lstsq(factor_exposure, stock_returns, rcond=None)[0]
return factor_premium
那些没人告诉你的隐藏成本
- 拥挤交易:当所有人都知道低波因子好用,这个策略就会变成新的"市场基准",溢价被摊薄。2018年四季度低波因子集体崩盘就是典型案例
- 风格漂移:你以为买的是"纯种价值因子基金",结果经理偷偷掺了动量调味。就像点了一杯手冲咖啡,结果喝出了速溶的味道
- 调仓损耗:高频调仓的SmartBeta产品,光交易费用就能吃掉1%的年收益。特别是小盘股因子,买卖价差就像过路费,每次调仓都要交
因子会失效吗?不如问天气会变吗
2000年互联网泡沫时,价值因子连续三年跑输成长因子,从业者纷纷宣布"价值已死"。但随后三年价值因子暴涨156%。因子就像季节,会有寒冬,但气候规律不会消失。关键是要知道:
- 因子的超额收益具有周期性
- 极端估值差最终会均值回归
- 但没人知道回归的具体时间
普通人的正确打开方式
- 别把所有钱押注单一因子,价值+质量+动量的组合比单押更抗跌
- 警惕高费率产品,管理费超过0.5%的SmartETF基本是在给渠道打工
- 用长期闲置资金投资,因子投资最怕被迫在冬天砍仓
记住,所有标榜"Smart"的策略,最终考验的都是投资者的耐心。就像冲浪,再好的浪板也救不了总是提前跳船的人。