计算机视觉
文章平均质量分 65
CV任务的实践经验分享
liuz_notes
Night gets darkest right before dawn. What doesn't kill you makes you stronger. ----LinkinPark
展开
-
Tensorflow、CUDA、Keras、cudnn安装版本匹配表
原创 2020-02-23 21:30:23 · 662 阅读 · 0 评论 -
本地MNIST数据集读取(最清晰、最实用)代码
在很多书籍或者博客中介绍代码案例的时候,用到的MNIST数据集都是在代码中直接下载使用,这样做可以直接运行不用考虑每个人机器的情况,但是存在着数据集可能无法下载、运行处理速度慢的弊端。故本博客将给出将本地下载好的MNIST数据集解压使用的代码。它能根据需要给定是否将数据展开成一维数组、数据归一化、one-hot编码的参数,便于我们进行训练。原创 2019-11-27 11:12:40 · 3329 阅读 · 0 评论 -
Canny边缘检测Demo——基于Opencv4.10和MFC【计算机视觉课程作业】
作业要求使用c/c++编写涉及课堂知识点,能实现一定功能的代码,并发布为可执行程序,在其他电脑上时运行时无需安装相关库。所以我用MFC和OpenCV写了一个小demo实现Canny边缘检测,通过静态编译满足程序通用性要求。项目代码已开源至Github原创 2021-06-18 15:11:54 · 731 阅读 · 1 评论 -
目标检测——基本数据增广(旋转、裁剪、缩放、填充、亮暗、对比度等)
图像处理的主要函数文件:image_utils.py# -*- coding: utf-8 -*-import numpy as npimport cv2from PIL import Image, ImageEnhanceimport randomfrom box_utils import multi_box_iou_xywh, box_crop# 随机改变亮暗、对比度和颜色...原创 2020-02-21 12:39:48 · 4165 阅读 · 5 评论 -
基于深度学习的肺部CT影像识别——采用U-net、3D CNN、cGAN实现肺结节的检测(三)
深度学习网络模型需要海量的数据集训练,否则无法体现深度学习应有的优势。因此医学图像数据增强是至关重要的,基于生成对抗网络充分利用数据本身来进行数据生成,从而在一定程度上解决正样本不足的问题,提升肺结节的检测精度。原创 2020-06-08 21:34:58 · 8479 阅读 · 19 评论 -
基于深度学习的肺部CT影像识别——采用U-net、3D CNN、cGAN实现肺结节的检测(二)
上一节中介绍了U-net在肺结节分割提取中的原理,能有效提取出候选结节。然而,由于结节形态特征的高度变异性和将其误认为邻近器官的可能性,原本不是结节的目标通过模型预测得到的结果被划定为结节。为了解决较高的假阳性问题,本文利用多尺度三维卷积神经网络来进行假阳性过滤,根据Bum-Chae Kim等人的开源代码,做了复现工作,实现了假阳性过滤。原创 2020-06-08 21:34:26 · 8454 阅读 · 15 评论 -
基于深度学习的肺部CT影像识别——采用U-net、3D CNN、cGAN实现肺结节的检测(一)
在医学图像处理中,传统的特征提取方法依赖于含有先验知识的特征提取和感兴趣区域的获取,这将直接影响肺结节检测的精度。而卷积神经网络无需人工提取特征,采用深度学习方法,随着卷积层数的加深,能提取出更加抽象、语义更丰富的特征。这里首先采用U-net将肺结节分割出来,生成候选集。原创 2020-06-06 21:57:17 · 14699 阅读 · 23 评论 -
基于深度学习的肺部CT影像识别——采用U-net、3D CNN、cGAN实现肺结节的检测(零)
本系列博客是我的部分本科毕业设计内容,基于LUNA16数据集对肺结节检测过程中的候选结节提取、假阳性过滤、数据集扩充等需求做了基本的实现。原创 2020-05-30 10:44:56 · 10140 阅读 · 5 评论 -
目标检测冠军竞赛指南:以百度飞桨(Paddle)集训营练习赛——AI识虫为例(基于YOLOv3)
本博客旨在以AI识虫为例介绍目标检测中的训练优化技巧,详细介绍了竞赛冠军的思路,对参加计算机视觉类大赛的参赛者、科研人员和工程人员具有一定的指导作用。原创 2020-05-03 23:52:15 · 4639 阅读 · 4 评论