目录
请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
输入一个链表,按链表值从尾到头的顺序返回一个ArrayList。
请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
public class replaceSpaceTest {
//请实现一个函数,将一个字符串中的每个空格替换成“%20”
// 。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
public String replaceSpace(StringBuffer str) {
int num = 0;
char[] chars = str.toString().toCharArray();
for(int i = 0; i < str.length(); i++){
if(chars[i] == ' '){
num++;
}
}
int len = chars.length + num*2-1;//新数组长度
char[] newchars = new char[len+1];
for(int j = chars.length-1; j > -1; j--){
if(chars[j] != ' '){
newchars[len--] = chars[j];
}else{
newchars[len--] = '0';
newchars[len--] = '2';
newchars[len--] = '%';
}
}
return String.valueOf(newchars);
}
@Test
public void Test1(){
char[] cha = new char[60];
for(int i = 0;i<10;i++){
if(i%5 != 0){
cha[i] = 'l';
}else{
cha[i] = ' ';
}
}
String str = String.valueOf(cha);//将字符数组转化为字符串
System.out.println(str);
// List list = Arrays.asList(cha);
// for(int i=0;i<cha.length;i++){
// System.out.println(cha[i]);
// }
replace(cha);
str = String.valueOf(cha);//将字符数组转化为字符串
System.out.println(str);
String str2 = "1398782323**565446";
char[] chars = str2.toCharArray();
replace2(chars);
str = String.valueOf(chars);
System.out.println(str);
String str3 = "139878 232 3 565446";
StringBuffer stringBuffer = new StringBuffer(str3);
System.out.println(replaceSpace(stringBuffer));
}
public void replace(char[] chas){
if(chas == null || chas.length == 0){
return;
}
int num = 0;
int len = 0;
for(len = 0; len < chas.length && chas[len] != 0; len++){
if(chas[len] == ' '){
num++;
}
}
int j = num*2 + len -1;//新数组的长度
for(int i = len-1;i>-1;i--){
if(chas[i] != ' '){
chas[j--] = chas[i];
} else{
chas[j--] = '0';
chas[j--] = '2';
chas[j--] = '%';
}
}
}
//数字字符和*的重新编排位置
public void replace2(char[] chas){
if(chas == null || chas.length == 0){
return;
}
int num = 0;
int j = chas.length - 1;//数组总长度
for(int i = chas.length -1; i > -1; i--){
if(chas[i] <= '9' && chas[i] >= '0' ){//如果是数字字符
chas[j--] = chas[i];
}else{
num++;
}
}
for(int i = 0;i<num;i++){
chas[i] = '*';//前num位置放*
}
}
}
用两个栈实现一个队列的pop和push功能
public class stackAndQueue {
Stack<Integer> stack1 = new Stack<Integer>();
Stack<Integer> stack2 = new Stack<Integer>();
public void push(int node) {
stack1.push(node);
}
public int pop() {
int result;
// if(stack1 == null && stack2 == null){
// return -1;
// }
if(stack1.isEmpty() && stack2.isEmpty() ){//判断栈是否为空
return -1;
}
if(stack2.empty()){
while(!stack1.empty()){
stack2.push(stack1.pop());//
}
}
result = stack2.pop();
return result;
}
}
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
public class minNumberInRotateArrayTest {
public int minNumberInRotateArray(int [] array) {
if(array.length == 0 || array == null){
return 0;
}
int left = 0;
int right = array.length - 1;
int result;
while (right >= left+1){
int mid = left + (right - left + 1) / 2;
if(array[mid] >= array[left]){
left = mid;
} else{
right = mid;
}
}
if(array[left] > array[right]){
result = array[right];
}else {
result = array[left];
}
return result;
}
public int process(int[] array, int left, int right){
int mid = left + (right - left + 1) / 2;
int result;
while (right >= left+1){
if(array[mid] > array[left]){
left = mid;
}else {
right = mid;
}
process(array, left, right);
}
if(array[left] > array[right]){
result = array[right];
}else {
result = array[left];
}
return array[mid];
}
}
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
public class FibonacciTest {
public int Fibonacci(int n) {
return process(n);
}
public int process(int n){
int count = 0;
int result = 0;
while( count <= n){
result = process(count-1) + process(count-2);
count--;
}
return result;
}
public int Fibonacci1(int n) {
if(n <= 1) return n;
else return Fibonacci1(n-1)+Fibonacci1(n-2);
}
@Test
public void Test1(){
// int a = Fibonacci1(5);
int a = Fibonacci2(5);
System.out.println(a);
}
public int Fibonacci2(int n){
return process2(n, 0, 1);
}
public int process2(int n, int acc1, int acc2){
if(n == 0) return 0;
if(n == 1) return acc2;
else return process2(n-1, acc2, acc1+acc2);
}
//使用矩阵乘法解题
public int Fibonacci3(int target){
if(target < 1){
return -1;
}
if(target == 1){
return 1;
}
if(target == 2){
return 2;
}
int[][] matix = {{1,1},{1,0}};//系数矩阵
int[][] matixR = {{1,0},{0,1}};//初始化单位矩阵
for(int i = 0;i<target-2 ;i++){//矩阵的n-2次的阶乘,后面是更优的解法
matixR = matixMultiCommon(matixR, matix);
}
return matixR[0][0] + 1*matixR[0][1];
}
//乘法:常数级别时间复杂度
public int[][] matixMulti(int[][] matrix1, int[][] matrix2){//矩阵乘法.matrix1与matrix2均为n阶矩阵
int[][] matrix = new int[matrix1.length][matrix1.length];
for(int i = 0; i < matrix1.length; i++){
for(int j = 0; j < matrix1.length; j++){
for(int h = 0; h<matrix1.length;h++){
matrix[i][j] += matrix1[i][h] * matrix2[h][j];
}
}
}
return matrix;
}
public int[][] matixMultiCommon(int[][] matrix1, int[][] matrix2){
//矩阵乘法.matrix1与matrix2为能相乘的任意俩个矩阵
int[][] matrix = new int[matrix1.length][matrix2[0].length];
for(int i = 0; i < matrix1.length; i++){
for(int j = 0; j < matrix2[0].length; j++){
for(int h = 0; h<matrix2.length;h++){
matrix[i][j] += matrix1[i][h] * matrix2[h][j];
}
}
}
return matrix;
}
public int[][] matrixPower(int[][] m, int p){//矩阵m的p次方,m为n阶矩阵
int[][] res = new int[m.length][m[0].length];
for(int i = 0;i<res.length;i++){
res[i][i] = 1;//初始化为单位矩阵
}
int[][] temp = m;
for(;p!=0;p>>=1){
if((p & 1) == 1){
res = matixMultiCommon(res, temp);
}
temp = matixMultiCommon(temp,temp);
}
return res;
}
@Test
public void Test3(){
int a = Fibonacci3(4);
System.out.println(a);
System.out.println( Fibonacci3(5));
System.out.println( Fibonacci3(6));
}
}
public class JumpFloorTest {
// 一只青蛙一次可以跳上1级台阶,也可以跳上2级。
// 求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
public int jumpFloor(int target){//使用递归
if(target == 1) return 1;
if(target == 2) return 2;
return jumpFloor(target-1) + jumpFloor(target - 2);
}
public int jumpFloor1(int target){//使用迭代
if(target == 1) return 1;
if(target == 2) return 2;
int a = 1;
int b = 2;
int total = 0;
for(int i = 3; i <= target;i++){
total = a+b;
a = b;
b = total;
}
return total;
}
}
输入一个链表,按链表值从尾到头的顺序返回一个ArrayList。
翻转了链表再输出的(改变了链表结构)
public ArrayList<Integer> printListFromTailToHead(Node head) {
ArrayList arrayList = new ArrayList();
Node pre = null;
Node next = null;
while (head != null){
next = head.next;
head.next = pre;
pre = head;
head = next;
}
head = pre;
while (pre!=null){
arrayList.add(pre.data);//把节点的值传进链表
pre = pre.next;
}
return arrayList;
}
}
递归版本:(推荐)
public void printListFromTailToHead2(Node head) {
if(head.next !=null){
printListFromTailToHead2(head.next);
}
System.out.println(head.data);
}
非递归实现先序、中序遍历
//非递归实现先序遍历
public void preOrderUnRecur(Node head){
System.out.println("pre-order");
if(head != null){
Stack<Node> stack = new Stack<>();
stack.add(head);
while (!stack.empty()){
head = stack.pop();
System.out.println(head.value);
if(head.left!= null)
stack.push(head.left);
if(head.right != null)
stack.push(head.right);
}
}
}
//非递归实现中序遍历
//1先把头节点压入栈中;2依次把头结点的左子树head = head.left 压入栈中; 3直到head为空,打印head的值
//时head = head.right 继续重复2; 当stack为空且head为空时,整个过程停止;
public void inOrderUnRecur(Node head){
System.out.println("inOrderUnRecur");
if(head != null){
Stack<Node> stack = new Stack<>();
while (!stack.isEmpty() || head != null){
if (head != null){
stack.add(head);
head = head.left;
}else{
head = stack.pop();
System.out.println(head.value);
head = head.right;
}
}
}
}
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。
假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
//通过先序和中序数组生成后序数组
public int[] getPosArray(int[] pre, int[] in){
if(pre == null || in == null){
return null;
}
int len = pre.length;
int[] pos = new int[len];//后序数组的长度
HashMap<Integer,Integer> map = new HashMap<Integer, Integer>();
for(int i=0; i<len;i++){
map.put(in[i],i);//中序数值及其索引
}
return pos;
}
//从左往后一次填好后序数组
//si为后序数组s该填的位置
//返回值为s该填的下一个位置
public int setPos(int[] p,int pi,int pj, int n,int ni,int nj,
int[] s,int si, HashMap<Integer,Integer> map){
if(pi > pj){
return si;
}
s[si--] = p[pi];
int i = map.get(p[pi]);//头节点在中序数组中的位置为i
si = setPos(p,pj-nj+i-1,pj,n,i+1, nj, s, si, map);//后序数组s该填的位置
return setPos(p, pi+1, pi+i-ni, n, ni, i-1, s, si, map);
}
private Node reBuild(int[] pre, int startPre, int endPre, int[] in, int startIn, int endIn){
if(startPre>endPre || startIn > endIn){
return null;
}
int root = pre[startPre];
int rootLocate = locate(root, in, startIn, endIn);
Node rootNode = new Node(root);
rootNode.left = reBuild(pre, startPre+1,
startPre+rootLocate-1, in, startIn+1, rootLocate-1);//建立左子树
rootNode.right = reBuild(pre, startPre+rootLocate-startIn+1,
endPre, in, rootLocate+1, endIn);//建立右子树
return rootNode;
}
private int locate(int root, int[] in,int startIn, int endIn){
for(int i = startIn;i<=endIn;i++){
if(root == in[i])
return i;
}
return -1;
}
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre == null || in == null || pre.length != in.length){
return null;
}else{
TreeNode root= reBuild(pre,0,pre.length-1,in,0,in.length-1);
return root;
}
}
private TreeNode reBuild(int[] pre, int startPre, int endPre, int[] in, int startIn, int endIn){
if(startPre>endPre || startIn > endIn){
return null;
}
TreeNode rootNode = new TreeNode(pre[startPre]);
for(int i = startIn;i <= endIn;i++){
if(pre[startPre] == in[i]){
rootNode.left = reBuild(pre, startPre+1,
startPre+i-startIn, in, startIn, i-1);//建立左子树
rootNode.right = reBuild(pre, startPre+i-startIn+1,
endPre, in, i+1, endIn);//建立右子树
break;
}
}
return rootNode;
}