数论Trailing Zeroes (III)light0j1138

本文探讨了如何通过编程解决一个数学问题:找到最小的自然数N,使得N!的十进制表示中尾数恰好含有Q个0。若不存在这样的N,则输出'impossible'。文章提供了一种有效的算法实现思路,并给出了完整的C++代码。

Description
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*…*N. For example, 5! = 120, 120 contains one zero on the trail.

Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.

Output
For each case, print the case number and N. If no solution is found then print ‘impossible’.

Sample Input
3
1
2
5
Sample Output
Case 1: 5
Case 2: 10
Case 3: impossible
题意:
给你一个数Q,求一个数N,满足N!尾部恰好有Q个0,如果这样的N不存在,输出impossible
题解:
问N!尾部有多少个0,观察规律会发现,其实只需要关注N!中有多少个5就可以了,每个5可以和其他数字相乘得到一个0,25有两个5,100有两个5,所以30!尾部有7个0,分别是5,10,15,20,25,30,其中25有两个5组成,统计小于等于N的整数中5的个数的函数如下

LL calu(LL x)
{
    LL sum = 0,temp = 5;
    while(x/temp)
    {
        sum += x/temp;
        temp *= 5;
    }
    return sum;
}

首先累加5的倍数的数字,这个时候漏掉了25的倍数的数字的一个5,再累加25的倍数的数字,依次累加即可,然后二分N,显然N不超过10^9,因为小于10^9的数字中至少有10^8个10的倍数

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL maxn = 1e9;

LL calu(LL x)
{
    LL sum = 0,temp = 5;
    while(x/temp)
    {
        sum += x/temp;
        temp *= 5;
    }
    return sum;
}

LL mylower_bound(LL x,LL y,LL val)
{
    while(x < y)
    {
        LL mid = (x + y) >> 1;
        LL midval = calu(mid);
        if(midval >= val) y = mid;
        else x = mid + 1;
    }
    if(val == calu(x)) return x;
    else return -1;
}
int main()
{
    LL T,cas = 1;
    scanf("%lld" ,&T);
    while(T--)
    {
        LL q;
        scanf("%lld" ,&q);
        LL n = mylower_bound(5,maxn,q);
        printf("Case %lld: ",cas++);
        if(n == -1) printf("impossible\n");
        else printf("%lld\n", n);
    }
    return 0;
}
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值