- 博客(1)
- 收藏
- 关注
原创 昇思25天学习打卡营第1天|LSTM+CRF序列标注
在实际应用中,如命名实体识别(NER)、词性标注(POS tagging)等任务中,LSTM+CRF模型表现优异。LSTM的上下文特征提取能力和CRF的序列标注能力相结合,使得模型能够处理复杂的序列依赖,提高标注精度。总的来说,LSTM+CRF模型在处理自然语言处理中的序列标注任务时,能够充分利用上下文信息和标签间的依赖关系,从而实现更高的标注精度。但是目前的效果还是BERT+CRF好些。
2024-06-24 17:29:15 289
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人