【堆】合并果子(C++)

这篇博客介绍了如何在果园中合并果子,以最小化多多合并果子时的体力耗费。通过合并不同种类的果子,每次合并的体力消耗等于两堆果子重量之和。文章给出了一个例子,解释了如何找到最小体力耗费的合并策略,并提到这个问题可以通过小根堆来解决。示例中展示了如何处理3种不同数量的果子,得出最小体力耗费为15。博客还提示读者,这个问题的解决方案可以使用队列来实现。
摘要由CSDN通过智能技术生成

Description
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出
所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

Input
包括两行,第一行是一个整数n(1 <= n <= 10000),表示果子的种类数。第二行包含n个整数,用空格分隔第i个整数ai(1 <= ai <= 20000)是第i种果子的数目。

Output
包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

Sample Input

3
1 2 9

Sample Output

15

HINT







这题可以用小根堆实现
小根堆定义:

priority_queue<int,vector<int>,greater<int> >q;
//q.push(...)压入某个数
//q.pop()弹出根
//q.top()返回根的值

有这几个玩意,就可以很容易写出代码了,下面是代码:

#include<bits/stdc++.h>
using namespace std;
priority_queue<int,vector<int>,greater<int> >q;
int ans=0;
<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值