子矩阵的和【二维前缀和】

子矩阵的和

题目描述

题干

输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1 , y1 , x2 , y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

数据范围

1 ≤ n , m ≤ 1000 , 1 ≤ q ≤ 200000 , 1≤n,m≤1000,1≤q≤200000, 1n,m10001q200000

1 ≤ x 1 ≤ x 2 ≤ n , 1 ≤ y 1 ≤ y 2 ≤ m , − 1000 ≤ 矩阵内元素的值 ≤ 1000 1≤x1≤x2 ≤n,1≤y1≤y2≤m,-1000≤矩阵内元素的值≤1000 1x1x2n1y1y2m,1000矩阵内元素的值1000

输入描述

第一行包含三个整数 n,m,q。

接下来 n 行,每行包含 m 个整数,表示整数矩阵。

接下来 q 行,每行包含四个整数 x1,y1,x2,y2,表示一组询问。

输出描述

共 q 行,每行输出一个询问的结果。

样例

输入

3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4

输出

17
27
21

思路

首先读完题即可知这是一道二维前缀和的题目
所以我们就自然可以先处理上前缀和数组
再用前缀和数组中的 [ x 2 ] [ y 2 ] − [ x 2 ] [ y 1 − 1 ] − [ x 1 − 1 ] [ y 2 ] + [ x 1 − 1 ] [ y 1 − 1 ] [x2][y2]-[x2][y1-1]-[x1-1][y2]+[x1-1][y1-1] [x2][y2][x2][y11][x11][y2]+[x11][y11]即可

AC代码

#include<iostream>
#include<cstdio>
using namespace std;
long long sum[1005][1005];
int a[1005][1005];
int main() {
	int n, m, q;
	int x1, x2, y1, y2;
	//输入
	scanf("%d%d%d", &n, &m, &q);
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			scanf("%d", &a[i][j]);
		}
	}
	//处理前缀和
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			sum[i][j] = sum[i - 1][j] + sum[i][j - 1] + a[i][j] - sum[i - 1][j - 1];
		}
	}
	//通过预处理的前缀和得出结果并输出
	for (int i = 0; i < q; i++) {
		scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
		int ans;
		ans = sum[x2][y2] - sum[x2][y1 - 1] - sum[x1 - 1][y2] + sum[x1 - 1][y1 - 1];
		printf("%d\n", ans);
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值