题目描述
给定一个常数 K 以及一个单链表 L,请编写程序将 L 中每 K 个结点反转。例如:给定 L 为 1→2→3→4→5→6,K 为 3,则输出应该为 3→2→1→6→5→4;如果 K 为 4,则输出应该为 4→3→2→1→5→6,即最后不到 K 个元素不反转。
输入格式:
每个输入包含 1 个测试用例。每个测试用例第 1 行给出第 1 个结点的地址、结点总个数正整数 N (≤105)、以及正整数 K (≤N),即要求反转的子链结点的个数。结点的地址是 5 位非负整数,NULL 地址用 −1 表示。
接下来有 N 行,每行格式为:
Address Data Next
其中 Address 是结点地址,Data 是该结点保存的整数数据,Next 是下一结点的地址。
输出格式:
对每个测试用例,顺序输出反转后的链表,其上每个结点占一行,格式与输入相同。
C++解法
#include <iostream>
#include <algorithm>
using namespace std;
int main() {
int first, k, n, temp;
cin >> first >> n >> k;
int data[100005], next[100005], list[100005];
for (int i = 0; i < n; i++) {
cin >> temp;
cin >> data[temp] >> next[temp];
}
int sum = 0;//不一定所有的输入的结点都是有用的,加个计数器
while (first != -1) {
list[sum++] = first;
first = next[first];
}
for (int i = 0; i < (sum - sum % k); i += k)
reverse(begin(list) + i, begin(list) + i + k);
for (int i = 0; i < sum - 1; i++)
printf("%05d %d %05d\n", list[i], data[list[i]], list[i + 1]);
printf("%05d %d -1", list[sum - 1], data[list[sum - 1]]);
return 0;
}
思路
分析:输入样例正确连接顺序应该是:
00100 1 12309
12309 2 33218
33218 3 00000
00000 4 99999
99999 5 68237
68237 6 -1
还应该考虑输入样例中有不在链表中的结点的情况。所以用sum来计数
而且,algorithm头文件里面有reverse函数可以直接调用
python解法
head, N_all, gap = map(int, input().split())
l_data = [None]*100001
l_next = [None]*100001
for i in range(N_all):
a_address, a_data, a_next = map(int, input().split())
l_next[a_address] = a_next
l_data[a_address] = a_data
l = []
while head != -1:
l.append(head)
head = l_next[head]
N_all = len(l)
n = N_all//gap
for i in range(n):
gaps = i*gap
l[gaps:gaps+gap] = l[gaps:gaps+gap][::-1]
for k,i in enumerate(l[:-1]):
print("{:0>5} {} {:0>5}".format(i, l_data[i], l[k+1]))
print("{:0>5} {} -1".format(l[-1], l_data[l[-1]]))