Hadoop学习(八)——MapReduce原理

笔者是一个痴迷于挖掘数据中的价值的学习人,希望在平日的工作学习中,挖掘数据的价值,找寻数据的秘密,笔者认为,数据的价值不仅仅只体现在企业中,个人也可以体会到数据的魅力,用技术力量探索行为密码,让大数据助跑每一个人,欢迎直筒们关注我的公众号,大家一起讨论数据中的那些有趣的事情。

我的公众号为:livandata

Mapreduce 是一个分布式运算程序的编程框架是用户开发“基于hadoop的数据分析应用”的核心框架;

Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上;

1.1、为什么要MAPREDUCE

1)海量数据在单机上处理因为硬件资源限制,无法胜任

2)而一旦将单机版程序扩展到集群来分布式运行,将极大增加程序的复杂度和开发难度

3)引入mapreduce框架后,开发人员可以将绝大部分工作集中在业务逻辑的开发上,而将分布式计算中的复杂性交由框架来处理

设想一个海量数据场景下的wordcount需求:

单机版:内存受限,磁盘受限,运算能力受限

分布式:

1、文件分布式存储(HDFS

2、运算逻辑需要至少分成2个阶段(一个阶段独立并发,一个阶段汇聚)

3、运算程序如何分发

4、程序如何分配运算任务(切片)

5、两阶段的程序如何启动?如何协调?

6、整个程序运行过程中的监控?容错?重试?

可见在程序由单机版扩成分布式时,会引入大量的复杂工作。为了提高开发效率,可以将分布式程序中的公共功能封装成框架,让开发人员可以将精力集中于业务逻辑。

mapreduce就是这样一个分布式程序的通用框架,其应对以上问题的整体结构如下:

1、MRAppMaster(mapreduce application master)

2、MapTask

3、ReduceTask

1.2、MR框架结构及核心运行机制

1.2.1、结构

一个完整的mapreduce程序在分布式运行时有三类实例进程:

1MRAppMaster:负责整个程序的过程调度及状态协调

2mapTask:负责map阶段的整个数据处理流程

3ReduceTask:负责reduce阶段的整个数据处理流程

1.2.2、MapReduce的原理为:

 

     1) map中的动作:a.切分;b.分组;c.分区;d.排序;e.发送给reduce;

     2) 在map中数据被一行行的读取,然后进行切分;然后再经历shuffle,然后进行reduce处理;

     3) HDFS——》map——》shuffle——》reduce——》HDFS;

 

    1. 在map task执行时,它的输入数据来源于HDFS的block,当然在MapReduce概念中,map task只读取split。Split与block的对应关系可能是多对一,默认是一对一。在WordCount例子里,假设map的输入数据都是像“aaa”这样的字符串。 

    2. 在经过mapper的运行后,我们得知mapper的输出是这样一个key/value对: key是“aaa”, value是数值1。因为当前map端只做加1的操作,在reduce task里才去合并结果集。前面我们知道这个job有3个reduce task,到底当前的“aaa”应该交由哪个reduce去做呢,是需要现在决定的。 

      MapReduce提供Partitioner接口,它的作用就是根据key或value及reduce的数量来决定当前的这对输出数据最终应该交由哪个reduce task处理。默认对key hash后再以reduce task数量取模。默认的取模方式只是为了平均reduce的处理能力,如果用户自己对Partitioner有需求,可以订制并设置到job上。 

      在我们的例子中,“aaa”经过Partitioner后返回0,也就是这对值应当交由第一个reducer来处理。接下来,需要将数据写入内存缓冲区中,缓冲区的作用是批量收集map结果,减少磁盘IO的影响。我们的key/value对以及Partition的结果都会被写入缓冲区。当然写入之前,key与value值都会被序列化成字节数组。 

     整个内存缓冲区就是一个字节数组,它的字节索引及key/value存储结构我没有研究过。如果有朋友对它有研究,那么请大致描述下它的细节吧。 

    3. 这个内存缓冲区是有大小限制的,默认是100MB。当map task的输出结果很多时,就可能会撑爆内存,所以需要在一定条件下将缓冲区中的数据临时写入磁盘,然后重新利用这块缓冲区。这个从内存往磁盘写数据的过程被称为Spill,中文可译为溢写,字面意思很直观。这个溢写是由单独线程来完成,不影响往缓冲区写map结果的线程。溢写线程启动时不应该阻止map的结果输出,所以整个缓冲区有个溢写的比例spill.percent。这个比例默认是0.8,也就是当缓冲区的数据已经达到阈值(buffer size * spillpercent = 100MB * 0.8 = 80MB),溢写线程启动,锁定这80MB的内存,执行溢写过程。Map task的输出结果还可以往剩下的20MB内存中写,互不影响。 

当溢写线程启动后,需要对这80MB空间内的key做排序(Sort)。排序是MapReduce模型默认的行为,这里的排序也是对序列化的字节做的排序。 

在这里我们可以想想,因为map task的输出是需要发送到不同的reduce端去,而内存缓冲区没有对将发送到相同reduce端的数据做合并,那么这种合并应该是体现是磁盘文件中的。从官方图上也可以看到写到磁盘中的溢写文件是对不同的reduce端的数值做过合并。所以溢写过程一个很重要的细节在于,如果有很多个key/value对需要发送到某个reduce端去,那么需要将这些key/value值拼接到一块,减少与partition相关的索引记录。

在针对每个reduce端而合并数据时,有些数据可能像这样:“aaa”/1, “aaa”/1。对于WordCount例子,就是简单地统计单词出现的次数,如果在同一个map task的结果中有很多个像“aaa”一样出现多次的key,我们就应该把它们的值合并到一块,这个过程叫reduce也叫combine。但MapReduce的术语中,reduce只指reduce端执行从多个maptask取数据做计算的过程。除reduce外,非正式地合并数据只能算做combine了。其实大家知道的,MapReduce中将Combiner等同于Reducer。 

如果client设置过Combiner,那么现在就是使用Combiner的时候了。将有相同key的key/value对的value加起来,减少溢写到磁盘的数据量。Combiner会优化MapReduce的中间结果,所以它在整个模型中会多次使用。那哪些场景才能使用Combiner呢?从这里分析,Combiner的输出是Reducer的输入,Combiner绝不能改变最终的计算结果。所以从我的想法来看,Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结果的场景。比如累加,最大值等。Combiner的使用一定得慎重,如果用好,它对job执行效率有帮助,反之会影响reduce的最终结果。

4. 每次溢写会在磁盘上生成一个溢写文件,如果map的输出结果真的很大,有多次这样的溢写发生,磁盘上相应的就会有多个溢写文件存在。当maptask真正完成时,内存缓冲区中的数据也全部溢写到磁盘中形成一个溢写文件。最终磁盘中会至少有一个这样的溢写文件存在(如果map的输出结果很少,当map执行完成时,只会产生一个溢写文件),因为最终的文件只有一个,所以需要将这些溢写文件归并到一起,这个过程就叫做Merge。Merge是怎样的?如前面的例子,“aaa”从某个map task读取过来时值是5,从另外一个map 读取时值是8,因为它们有相同的key,所以得merge成group。什么是group。对于“aaa”就是像这样的:{“aaa”, [5, 8, 2, …]},数组中的值就是从不同溢写文件中读取出来的,然后再把这些值加起来。请注意,因为merge是将多个溢写文件合并到一个文件,所以可能也有相同的key存在,在这个过程中如果client设置过Combiner,也会使用Combiner来合并相同的key。 

至此,map端的所有工作都已结束,最终生成的这个文件也存放在TaskTracker够得着的某个本地目录内。每个reduce task不断地通过RPC从JobTracker那里获取maptask是否完成的信息,如果reduce task得到通知,获知某台TaskTracker上的map task执行完成,Shuffle的后半段过程开始启动。 

简单地说,reduce task在执行之前的工作就是不断地拉取当前job里每个map task的最终结果,然后对从不同地方拉取过来的数据不断地做merge,也最终形成一个文件作为reduce task的输入文件。

见下图: 

如map 端的细节图,Shuffle在reduce端的过程也能用图上标明的三点来概括。当前reduce copy数据的前提是它要从JobTracker获得有哪些map task已执行结束,这段过程不表,有兴趣的朋友可以关注下。Reducer真正运行之前,所有的时间都是在拉取数据,做merge,且不断重复地在做。如前面的方式一样,下面我也分段地描述reduce 端的Shuffle细节: 

    1. Copy过程,简单地拉取数据。Reduce进程启动一些数据copy线程(Fetcher),通过HTTP方式请求map task所在的TaskTracker获取map task的输出文件。因为map task早已结束,这些文件就归TaskTracker管理在本地磁盘中。 
     2. Merge阶段。这里的merge如map端的merge动作,只是数组中存放的是不同map端copy来的数值。Copy过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比map端的更为灵活,它基于JVM的heapsize设置,因为Shuffle阶段Reducer不运行,所以应该把绝大部分的内存都给Shuffle用。这里需要强调的是,merge有三种形式:1)内存到内存  2)内存到磁盘  3)磁盘到磁盘。默认情况下第一种形式不启用,让人比较困惑,是吧。当内存中的数据量到达一定阈值,就启动内存到磁盘的merge。与map 端类似,这也是溢写的过程,这个过程中如果你设置有Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。第二种merge方式一直在运行,直到没有map端的数据时才结束,然后启动第三种磁盘到磁盘的merge方式生成最终的那个文件。 
     3. Reducer的输入文件。不断地merge后,最后会生成一个“最终文件”。为什么加引号?因为这个文件可能存在于磁盘上,也可能存在于内存中。对我们来说,当然希望它存放于内存中,直接作为Reducer的输入,但默认情况下,这个文件是存放于磁盘中的。至于怎样才能让这个文件出现在内存中,之后的性能优化篇我再说。当Reducer的输入文件已定,整个Shuffle才最终结束。然后就是Reducer执行,把结果放到HDFS上。 

1.3、MapTask并行度决定机制

maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度

那么,mapTask并行实例是否越多越好呢?其并行度又是如何决定呢?

1.3.1 mapTask并行度的决定机制

一个job的map阶段并行度由客户端在提交job时决定

而客户端对map阶段并行度的规划的基本逻辑为:

将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理

这段逻辑及形成的切片规划描述文件,FileInputFormat实现类的getSplits()方法完成,其过程如下图:

在源码中切片的方法可以被观察:

在源码中打断点,然后运行flowcount,看是否能够进入到源码中,即可看到运行的结果;

在debug中设定debug configuration,在其中添加相应的参数;

在yarn中的代码运行的时候需要进入到:

然后进入到源码中:

打印job中的流程,然后提交:

 

进入到connect的方法中:

Cluster是成员变量,对应的会到cluster中:

在initialize中进入到对应的方法中,提供模拟器,然后在本地运行:

然后返回到connect中,执行submitter方法:

跳进submit方法中:

然后运行到:

此处为yarn中提交出来的子路径,走这一大串是为了获得提交资源的路径,然后进入到:

然后接下来会执行切片规划:

Maptask的数量与切片的内容有关;

返回的一个切片的描述对象,list即为了盛放切片信息:

然后整理对应的参数:

此处处理block的大小,block大小永远都无法超越block的最大值:

使用每个切片的大小,然后逐个地切分切片:

然后查看counter中的内容:

Split完成后还需要进行排序,然后生成切片文件:

此时会产生一个job.xml文件:

然后提交job:

Job.xml中存在了所有的参数;

1.3.2、FileInputFormat切片机制

1、切片定义在InputFormat类中的getSplit()方法

用来定义分区的大小,重写getsplit()方法即可。

2、FileInputFormat中默认的切片机制:

a)        简单地按照文件的内容长度进行切片

b)       切片大小,默认等于block大小

c)        切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

比如待处理数据有两个文件:

file1.txt    320M

file2.txt    10M

经过FileInputFormat的切片机制运算后,形成的切片信息如下: 

file1.txt.split1--  0~128

file1.txt.split2--  128~256

file1.txt.split3--  256~320

file2.txt.split1--  0~10M

3、FileInputFormat中切片的大小的参数配置

通过分析源码,在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize,blockSize));  切片主要由这几个值来运算决定:

minsize:默认值:(切片的最小值)

    配置参数: mapreduce.input.fileinputformat.split.minsize   

maxsize:默认值:Long.MAXValue  (切片的最大值)

    配置参数:mapreduce.input.fileinputformat.split.maxsize

blocksize

因此,默认情况下,切片大小=blocksize

maxsize(切片最大值):

参数如果调得比blocksize小,则会让切片变小,而且就等于配置的这个参数的值

minsize (切片最小值):

参数调的比blockSize大,则可以让切片变得比blocksize还大

选择并发数的影响因素:

1、运算节点的硬件配置

2、运算任务的类型:CPU密集型还是IO密集型

3、运算任务的数据量

1.4、map并行度的经验之谈

如果硬件配置为2*12core+ 64G,恰当的map并行度是大约每个节点20-100个map,最好每个map的执行时间至少一分钟。

l  如果job的每个map或者 reducetask的运行时间都只有30-40秒钟,那么就减少该job的map或者reduce数,每一个task(map|reduce)的setup和加入到调度器中进行调度,这个中间的过程可能都要花费几秒钟,所以如果每个task都非常快就跑完了,就会在task的开始和结束的时候浪费太多的时间。

JVM重用技术不是指同一Job的两个或两个以上的task可以同时运行于同一JVM上,而是排队按顺序执行。

配置task的JVM重用可以改善该问题:

(mapred.job.reuse.jvm.num.tasks,默认是1,表示一个JVM上最多可以顺序执行的task

数目(属于同一个Job)是1。也就是说一个task启一个JVM)

l  如果input的文件非常的大,比如1TB,可以考虑将hdfs上的每个block size设大,比如设成256MB或者512MB

1.5、Reduce Task并行度的决定

reducetask的并行度同样影响整个job的执行并发度和执行效率,但与maptask的并发数由切片数决定不同,Reducetask数量的决定是可以直接手动设置:

//默认值是1,手动设置为4

job.setNumReduceTasks(4);

如果数据分布不均匀,就有可能在reduce阶段产生数据倾斜

注意:reducetask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1reducetask

尽量不要运行太多的reduce task。对大多数job来说,最好rduce的个数最多和集群中的reduce持平,或者比集群的reduce slots小。这个对于小集群而言,尤其重要。

1.6 MAPREDUCE程序运行演示

Hadoop的发布包中内置了一个hadoop-mapreduce-example-2.4.1.jar,这个jar包中有各种MR示例程序,可以通过以下步骤运行:

启动hdfsyarn

然后在集群中的任意一台服务器上启动执行程序(比如运行wordcount):

hadoopjar hadoop-mapreduce-example-2.4.1.jar wordcount  /wordcount/data /wordcount/out

2. MAPREDUCE实践篇(1)

2.1、示例编写及编程规范

2.1.1、编程规范

(1)用户编写的程序分成三个部分MapperReducerDriver(提交运行mr程序的客户端)

(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

(3)Mapper的输出数据是KV对的形式(KV的类型可自定义)

(4)Mapper中的业务逻辑写在map()方法中

(5)map()方法(maptask进程)对每一个<K,V>调用一次

(6)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

(7)Reducer的业务逻辑写在reduce()方法中

(8)Reducetask进程对每一组相同k<k,v>组调用一次reduce()方法

(9)用户自定义的MapperReducer都要继承各自的父类

(10)整个程序需要一个Drvier来进行提交,提交的是一个描述了各种必要信息的job对象。

统计每个单词出现的总次数,如果有一批文件,文件的数量比较大,此时放在一台机器上统计不完成,需要在多台机器上放置代码,需要用hdfs的客户端连接hdfs文件:

1) 将数据分布式存放在每一台服务器上;

2) 然后在每一台服务器上放置代码,代码读取指定服务器的数据块;

3) 然后每台服务器的计算结果推送给一个总的示例(示例也可以分开多个,每个示例计算一定范围的数据),用于计数;

此为需要进行保存分析的文件,由于量比较大,需要保存在多个服务器中;

这个思想会有若干复杂的问题:

1) map task 如何进行任务分配;

2) reduce task如何分配要处理的任务;

3) mapreduce之间如何衔接;

4) 如果maptask运行失败,如何处理;

5) Map如果都要自己负责输出数据的分区,很麻烦;

6) Mapreduce需要一个主管mr application master

Wordcount的流程为:

1)客户端中进行submit的时候需要到hdfs中查看需要分析的文件大小,然后构建一个规划,确定多大一个,形成任务分配规划,比如:0-128为第一个文件,129-256为第二个文件等;

2)这些规划写在配置文件中:job.split,参数也会写在job.xml文件中,然后将这些文件提交给yarnyarn在云端,yarn会根据我们上传的参数文件,master等启动mrappmaster,主要是查看哪台机器比较闲,然后启动哪台,yarn中有一个resourcemanager,这个文件会协调相应的资料信息,各个服务器中也存在nodemanageryarn会将所有的jar包内容给到appmaster,以方便这个服务器使用,然后,yarn会根据文件资料来启动map方法,然后将数据文件传给各个map方法;

3)在读资料文件时需要用到maptask文件,maptask会使用inputformat方法来读取hdfs中的文件,将读取来数据交给我们自定义的map方法:wordcountmapper(),然后调用map方法,然后输出write,输出的内容会有一个收集器outputcollector,收集到一个文件中,这个文件会收集并分区,如果程序中有三个map,则文件会分成三个分区;

4)当map运行完之后,appmaster再启动一个reducetask,这个reducetask是在map运行完成后再执行,reduce task会根据产生的文件结果,将内容导入到reduce task中,reduce此时会拿着一组数据去调用reduce的方法,reduce中也会有收集器,输出一个,收集一个,然后将数据向外面写,outputformat方法执行,然后追加到外面的文件里面;

5shuffle中依然会存在一些小细节;

下图为相应的图片:

6)shuffle中存在哪些细节,需要进行相应的介绍:

         数据在传输的时候reduce需要将数据从map的文件中拿过来,此时reducemap未必在一台服务器上,此时便会通过通讯来获取数据,数据在传输的过程中对基本的对象有封装,但是对个性化的内容该如何处理?

作业:

         统计每个用户(手机号)所耗费的总上行流量、下行流量、总流量;

1) map

读一行,切分字段;

抽取手机号,上行流量,下行流量;(此处可以将上行流量和下行流量封装成一个对象,然后就可以直接传输一个bean过去)

Context.write(手机号,)

2) reduce

此时需要计算每个上行流量、下行流量的汇总等

3)  

对应的代码为:

         Writeable的源码:

上面为运行的代码,其中存在自定义的bean类型:

这个bean继承的类为LongWritable,下图为源代码:

然后打包jar文件,将文件拖到hadoop的服务器中:

在服务器中加入需要处理的数据:

将数据信息粘入到文件中,运行jar文件:

此时运行的时候发现只有一个切片:

如果将文件再复制出两个,则此时再运行jar文件,则会出现3map

此时如果jps看一下,则可以看到:有3map1reduce,同时会有3localmap

因此,切片与文件数量有关,同时与文件的大小也有关系;

打开输出结果文件可以看到相应的总流量:

此时凸显一个问题,即文件的切片该如何切才好:

1)如果有300兆数据,hdfs中是存储再datanode中的,有三个blockmaptask处理的时候可以分成三个map,分别处理一个blockmap在分任务的时候是逻辑的切片,而下面的block是实实在在的切片,两者没有关联,假设程序在第一个服务器上运行,会先运行本服务器上的block,而后api就会通过网络传输到第二个服务器上,进行下一步数据的读取处理,此时处理效率较低;

为提高效率,就要按照块的大小切,然后各个程序执行各自服务器上的数据,这个工作是由客户端在main方法中做,main方法中会进行切片的处理,切分处理完成后将内容交给yarn,然后yarn就会将每个切片分配给一个map task实例;

1.7.2、wordcount示例编写

需求:在一堆给定的文本文件中统计输出每一个单词出现的总次数

(1)定义一个mapper

//首先要定义四个泛型的类型

//keyin:  LongWritable    valuein: Text

//keyout: Text            valueout:IntWritable

 

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{

         //map方法的生命周期:  框架每传一行数据就被调用一次

         //key :  这一行的起始点在文件中的偏移量

         //value: 这一行的内容

         @Override

         protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                   //拿到一行数据转换为string

                   String line = value.toString();

                   //将这一行切分出各个单词

                   String[] words = line.split(" ");

                   //遍历数组,输出<单词,1>

                   for(String word:words){

                            context.write(new Text(word), new IntWritable(1));

                   }

         }

}

 (2)定义一个reducer

         //生命周期:框架每传递进来一个kv 组,reduce方法被调用一次

         @Override

         protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

                   //定义一个计数器

                   int count = 0;

                   //遍历这一组kv的所有v,累加到count

                   for(IntWritable value:values){

                            count += value.get();

                   }

                   context.write(key, new IntWritable(count));

         }

}

 (3)定义一个主类,用来描述job并提交job

public class WordCountRunner {

         //把业务逻辑相关的信息(哪个是mapper,哪个是reducer,要处理的数据在哪里,输出的结果放哪里……)描述成一个job对象

         //把这个描述好的job提交给集群去运行

         public static void main(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   Job wcjob = Job.getInstance(conf);

                   //指定我这个job所在的jar

//               wcjob.setJar("/home/hadoop/wordcount.jar");

                   wcjob.setJarByClass(WordCountRunner.class);

                  

                   wcjob.setMapperClass(WordCountMapper.class);

                   wcjob.setReducerClass(WordCountReducer.class);

                   //设置我们的业务逻辑Mapper类的输出keyvalue的数据类型

                   wcjob.setMapOutputKeyClass(Text.class);

                   wcjob.setMapOutputValueClass(IntWritable.class);

                   //设置我们的业务逻辑Reducer类的输出keyvalue的数据类型

                   wcjob.setOutputKeyClass(Text.class);

                   wcjob.setOutputValueClass(IntWritable.class);

                  

                   //指定要处理的数据所在的位置

                   FileInputFormat.setInputPaths(wcjob, "hdfs://hdp-server01:9000/wordcount/data/big.txt");

                   //指定处理完成之后的结果所保存的位置

                   FileOutputFormat.setOutputPath(wcjob, new Path("hdfs://hdp-server01:9000/wordcount/output/"));

                  

                   //yarn集群提交这个job

                   boolean res = wcjob.waitForCompletion(true);

                   System.exit(res?0:1);

         }

视频中写一个wordcount的代码:

1、为yarn文件,用来进行调度:

2map程序:

3reduce程序:

完后需要将这个项目打成jar包;

然后将其导入到linux服务器中,启动hdfsyarn(运行程序的)然后将jar文件放到服务器上:

hadoop下建一个目录:

然后就可以跑代码了:

此时会报错,因为没有依赖类进入,此时改变运行方法(此方法默认设置引用了依赖类):

此时,程序提交,完成。

在页面上可以看到:

linux中运行结果的文件为:

其重要的流程为:

接下来流程会将job资源向下流动;

List序列化成为一个文件:job.split,然后将文件提交到jobid的路径下面;

接下来还会生成一个xml文件,将job相关参数写成一个文件,这个文件叫做job.xml,然后将文件提交到jobid的路径下面;

最后将jobjar包也复制过去,可以通过copyfromlocal复制过去:

MapReduce程序运行模式

2.2.1、本地运行模式

(1)mapreduce程序是被提交给LocalJobRunner在本地以单进程的形式运行

(2)而处理的数据及输出结果可以在本地文件系统,也可以在hdfs

(3)怎样实现本地运行?写一个程序,不要带集群的配置文件(本质是你的mr程序的conf中是否有mapreduce.framework.name=local以及yarn.resourcemanager.hostname参数)

(4)本地模式非常便于进行业务逻辑的debug,只要在eclipse中打断点即可

如果在windows下想运行本地模式来测试程序逻辑,需要在windows中配置环境变量:

HADOOP_HOME  =  d:/hadoop-2.6.1

%PATH% =  HADOOP_HOME\bin

并且要将d:/hadoop-2.6.1libbin目录替换成windows平台编译的版本

2.2.2、集群运行模式

(1)mapreduce程序提交给yarn集群resourcemanager,分发到很多的节点上并发执行

(2)处理的数据和输出结果应该位于hdfs文件系统

(3)提交集群的实现步骤:

A、将程序打成JAR包,然后在集群的任意一个节点上用hadoop命令启动

     $ hadoop jar wordcount.jarcn.itcast.bigdata.mrsimple.WordCountDriver inputpath outputpath

B、直接在linuxeclipse中运行main方法

(项目中要带参数:mapreduce.framework.name=yarn以及yarn的两个基本配置)

C、如果要在windowseclipse中提交job给集群,则要修改YarnRunner

 mapreduce程序在集群中运行时的大体流程:

平台上访问hadoop时改变自身身份标识的方法之二:

3. MAPREDUCE中的Combiner

Combiner的使用要非常谨慎

因为combiner在mapreduce过程中可能调用也肯能不调用,可能调一次也可能调多次

所以:combiner使用的原则是:有或没有都不能影响业务逻辑

(1)combinerMR程序中MapperReducer之外的一种组件

(2)combiner组件的父类就是Reducer

(3)combinerreducer的区别在于运行的位置:

Combiner是在每一个maptask所在的节点运行

Reducer是接收全局所有Mapper的输出结果;

(4) combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量

具体实现步骤:

1、  自定义一个combiner继承Reducer,重写reduce方法

2、  job中设置:  job.setCombinerClass(CustomCombiner.class)

(5) combiner能够应用的前提是不能影响最终的业务逻辑

而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来

3. MAPREDUCE原理篇(2)

3.1、MapReduce的shuffle机制

3.1.1、概述:

v  mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle;

shuffle: 洗牌、发牌——(核心机制:数据分区,排序,缓存);

具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序;

3.1.2、主要流程:

Shuffle缓存流程:

shuffleMR处理流程中的一个过程,它的每一个处理步骤是分散在各个map taskreduce task节点上完成的,整体来看,分为3个操作:

1、分区partition

2、Sort根据key排序

3、Combiner进行局部value的合并 

3.1.3、详细流程

1、 maptask收集我们的map()方法输出的kv对,放到内存缓冲区中

2、 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

3、 多个溢出文件会被合并成大的溢出文件

4、 在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序

5、 reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据

6、 reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)

7、 合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)

Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快

缓冲区的大小可以通过参数调整参数:io.sort.mb  默认100M

3.1.4、详细流程示意图

 

3.2、MapReduce中的序列化

 

3.2.1、概述

Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系。。。。),不便于在网络中高效传输;

所以,hadoop自己开发了一套序列化机制(Writable),精简,高效

3.2.2、Jdk序列化和MR序列化之间的比较

简单代码验证两种序列化机制的差别:

public class TestSeri {

         public static void main(String[] args) throws Exception {

                   //定义两个ByteArrayOutputStream,用来接收不同序列化机制的序列化结果

                   ByteArrayOutputStream ba = new ByteArrayOutputStream();

                   ByteArrayOutputStream ba2 = new ByteArrayOutputStream();

                   //定义两个DataOutputStream,用于将普通对象进行jdk标准序列化

                   DataOutputStream dout = new DataOutputStream(ba);

                   DataOutputStream dout2 = new DataOutputStream(ba2);

                   ObjectOutputStream obout = new ObjectOutputStream(dout2);

                   //定义两个bean,作为序列化的源对象

                   ItemBeanSer itemBeanSer = new ItemBeanSer(1000L, 89.9f);

                   ItemBean itemBean = new ItemBean(1000L, 89.9f);

                   //用于比较String类型和Text类型的序列化差别

                   Text atext = new Text("a");

                   // atext.write(dout);

                   itemBean.write(dout);

                   byte[] byteArray = ba.toByteArray();

                   //比较序列化结果

                   System.out.println(byteArray.length);

                   for (byte b : byteArray) {

                            System.out.print(b);

                            System.out.print(":");

                   }

                   System.out.println("-----------------------");

                   String astr = "a";

                   // dout2.writeUTF(astr);

                   obout.writeObject(itemBeanSer);

                   byte[] byteArray2 = ba2.toByteArray();

                   System.out.println(byteArray2.length);

                   for (byte b : byteArray2) {

                            System.out.print(b);

                            System.out.print(":");

                   }

         }

}

3.2.3、自定义对象实现MR中的序列化接口

如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序,此时,自定义的bean实现的接口应该是:

public  class  FlowBean implements  WritableComparable<FlowBean>

需要自己实现的方法是:

         /**

          * 反序列化的方法,反序列化时,从流中读取到的各个字段的顺序应该与序列化时写出去的顺序保持一致

          */

         @Override

         public void readFields(DataInput in) throws IOException {

                  

                   upflow = in.readLong();

                   dflow = in.readLong();

                   sumflow = in.readLong();

                   }

         /**

          * 序列化的方法

          */

         @Override

         public void write(DataOutput out) throws IOException {

                   out.writeLong(upflow);

                   out.writeLong(dflow);

                   //可以考虑不序列化总流量,因为总流量是可以通过上行流量和下行流量计算出来的

                   out.writeLong(sumflow);

         }

         @Override

         public int compareTo(FlowBean o) {

                   //实现按照sumflow的大小倒序排序

                   return sumflow>o.getSumflow()?-1:1;

         }

3.3、MapReduce与YARN

3.3.1、Yarn概述

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序

3.3.2、Yarn的重要概念

1、 yarn并不清楚用户提交的程序的运行机制

2、 yarn只提供运算资源的调度(用户程序向yarn申请资源,yarn就负责分配资源)

3、 yarn中的主管角色叫ResourceManager

4、 yarn中具体提供运算资源的角色叫NodeManager

5、 这样一来,yarn其实就与运行的用户程序完全解耦,就意味着yarn上可以运行各种类型的分布式运算程序(mapreduce只是其中的一种),比如mapreducestorm程序,spark程序,tez ……

6、 所以,sparkstorm等运算框架都可以整合在yarn上运行,只要他们各自的框架中有符合yarn规范的资源请求机制即可

7、 Yarn就成为一个通用的资源调度平台,从此,企业中以前存在的各种运算集群都可以整合在一个物理集群上,提高资源利用率,方便数据共享

3.3.3、Yarn中运行运算程序的示例

mapreduce程序的调度过程,如下图

 

4. MAPREDUCE实践篇(2)

4.1. Mapreduce中的排序初步

4.1.1、需求

对日志数据中的上下行流量信息汇总,并输出按照总流量倒序排序的结果

数据如下:

1363157985066           13726230503   00-FD-07-A4-72-B8:CMCC         120.196.100.82             24          27         2481    24681      200

1363157995052           13826544101   5C-0E-8B-C7-F1-E0:CMCC          120.197.40.4               4            0            264       0            200

1363157991076           13926435656   20-10-7A-28-CC-0A:CMCC         120.196.100.99             2            4            132       1512      200

1363154400022           13926251106   5C-0E-8B-8B-B1-50:CMCC         120.197.40.4                 4            0            240        0           200

4.1.2、分析

基本思路:实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输

MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key

所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable

然后重写key的compareTo方法

4.1.3、实现

1、 自定义的bean

public class FlowBean implements WritableComparable<FlowBean>{

         long upflow;

         long downflow;

         long sumflow;

         //如果空参构造函数被覆盖,一定要显示定义一下,否则在反序列时会抛异常

         public FlowBean(){}

         public FlowBean(long upflow, long downflow) {

                   super();

                   this.upflow = upflow;

                   this.downflow = downflow;

                   this.sumflow = upflow + downflow;

         }

         public long getSumflow() {

                   return sumflow;

         }

public void setSumflow(long sumflow) {

                   this.sumflow = sumflow;

         }

         public long getUpflow() {

                   return upflow;

         }

         public void setUpflow(long upflow) {

                   this.upflow = upflow;

         }

         public long getDownflow() {

                   return downflow;

         }

         public void setDownflow(long downflow) {

                   this.downflow = downflow;

         }

         //序列化,将对象的字段信息写入输出流

         @Override

         public void write(DataOutput out) throws IOException {

                   out.writeLong(upflow);

                   out.writeLong(downflow);

                   out.writeLong(sumflow);

         }

         //反序列化,从输入流中读取各个字段信息

         @Override

         public void readFields(DataInput in) throws IOException {

                   upflow = in.readLong();

                   downflow = in.readLong();

                   sumflow = in.readLong();

         }

         @Override

         public String toString() {

                   return upflow + "\t" + downflow + "\t" + sumflow;

         }

         @Override

         public int compareTo(FlowBean o) {

                   //自定义倒序比较规则

                   return sumflow > o.getSumflow() ? -1:1;

         }

}

2、 mapper reducer

public class FlowCount {

         static class FlowCountMapper extends Mapper<LongWritable, Text, FlowBean,Text > {

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            String line = value.toString();

                            String[] fields = line.split("\t");

                            try {

                                     String phonenbr = fields[0];

                                     long upflow = Long.parseLong(fields[1]);

                                     long dflow = Long.parseLong(fields[2]);

                                     FlowBean flowBean = new FlowBean(upflow, dflow);

                                     context.write(flowBean,new Text(phonenbr));

                            } catch (Exception e) {

                                     e.printStackTrace();

                            }

                   }

         }

         static class FlowCountReducer extends Reducer<FlowBean,Text,Text, FlowBean> {

                   @Override

                   protected void reduce(FlowBean bean, Iterable<Text> phonenbr, Context context) throws IOException, InterruptedException {

                            Text phoneNbr = phonenbr.iterator().next();

                            context.write(phoneNbr, bean);

                   }

         }

         public static void main(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   Job job = Job.getInstance(conf);

                   job.setJarByClass(FlowCount.class);

                   job.setMapperClass(FlowCountMapper.class);

                   job.setReducerClass(FlowCountReducer.class);

                   job.setMapOutputKeyClass(FlowBean.class);

                   job.setMapOutputValueClass(Text.class);

                   job.setOutputKeyClass(Text.class);

                   job.setOutputValueClass(FlowBean.class);

                   // job.setInputFormatClass(TextInputFormat.class);

                   FileInputFormat.setInputPaths(job, new Path(args[0]));

                   FileOutputFormat.setOutputPath(job, new Path(args[1]));

                   job.waitForCompletion(true);

         }

}

4.2、MapReduce中的分区Partitioner

4.2.1、需求

根据归属地输出流量统计数据结果到不同文件,以便于在查询统计结果时可以定位到省级范围进行

4.2.2、分析

Mapreduce中会将map输出的kv对,按照相同key分组,然后分发给不同的reducetask

默认的分发规则为:根据keyhashcode%reducetask数来分发

所以:如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner

自定义一个CustomPartitioner继承抽象类:Partitioner

然后在job对象中,设置自定义partitionerjob.setPartitionerClass(CustomPartitioner.class)

4.2.3、实现

/**

 * 定义自己的从mapreduce之间的数据(分组)分发规则按照手机号所属的省份来分发(分组)ProvincePartitioner

 * 默认的分组组件是HashPartitioner

* @author

 *

 */

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {

         static HashMap<String, Integer> provinceMap = new HashMap<String, Integer>();

         static {

                   provinceMap.put("135", 0);

                   provinceMap.put("136", 1);

                   provinceMap.put("137", 2);

                   provinceMap.put("138", 3);

                   provinceMap.put("139", 4);

         }

         @Override

         public int getPartition(Text key, FlowBean value, int numPartitions) {

                   Integer code = provinceMap.get(key.toString().substring(0, 3));

                   return code == null ? 5 : code;

         }

}

4.3、MapReduce数据压缩

4.3.1、概述

这是mapreduce的一种优化策略:通过压缩编码对mapper或者reducer的输出进行压缩,以减少磁盘IO提高MR程序运行速度(但相应增加了cpu运算负担)

1、  Mapreduce支持将map输出的结果或者reduce输出的结果进行压缩,以减少网络IO或最终输出数据的体积

2、  压缩特性运用得当能提高性能,但运用不当也可能降低性能

3、  基本原则:

运算密集型的job,少用压缩

IO密集型的job,多用压缩

4.3.2、MR支持的压缩编码

4.3.3、Reducer输出压缩

在配置参数或在代码中都可以设置reduce的输出压缩

1、在配置参数中设置

mapreduce.output.fileoutputformat.compress=false

mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.DefaultCodec

mapreduce.output.fileoutputformat.compress.type=RECORD

2、在代码中设置

                   Job job = Job.getInstance(conf);

                   FileOutputFormat.setCompressOutput(job, true);

                   FileOutputFormat.setOutputCompressorClass(job, (Class<? extends CompressionCodec>) Class.forName(""));

4.3.4、Mapper输出压缩

在配置参数或在代码中都可以设置reduce的输出压缩

1、在配置参数中设置

mapreduce.map.output.compress=false

mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.DefaultCodec

2、在代码中设置:

conf.setBoolean(Job.MAP_OUTPUT_COMPRESS, true);

conf.setClass(Job.MAP_OUTPUT_COMPRESS_CODEC, GzipCodec.class, CompressionCodec.class);

4.3.5、压缩文件的读取

Hadoop自带的InputFormat类内置支持压缩文件的读取,比如TextInputformat类,在其initialize方法中:

  public void initialize(InputSplit genericSplit,TaskAttemptContext context) throws IOException {

     FileSplit split = (FileSplit) genericSplit;

    Configuration job = context.getConfiguration();

    this.maxLineLength = job.getInt(MAX_LINE_LENGTH, Integer.MAX_VALUE);

    start = split.getStart();

    end = start + split.getLength();

    final Path file = split.getPath();

    // open the file and seek to the start of the split

    final FileSystem fs = file.getFileSystem(job);

    fileIn = fs.open(file);

    //根据文件后缀名创建相应压缩编码的codec

    CompressionCodec codec = new CompressionCodecFactory(job).getCodec(file);

    if (null!=codec) {

      isCompressedInput = true;

      decompressor = CodecPool.getDecompressor(codec);

           //判断是否属于可切片压缩编码类型

      if (codec instanceof SplittableCompressionCodec) {

        final SplitCompressionInputStream cIn =

          ((SplittableCompressionCodec)codec).createInputStream(

            fileIn, decompressor, start, end,

            SplittableCompressionCodec.READ_MODE.BYBLOCK);

                   //如果是可切片压缩编码,则创建一个CompressedSplitLineReader读取压缩数据

        in = new CompressedSplitLineReader(cIn, job,

            this.recordDelimiterBytes);

        start = cIn.getAdjustedStart();

        end = cIn.getAdjustedEnd();

        filePosition = cIn;

      } else {

                  //如果是不可切片压缩编码,则创建一个SplitLineReader读取压缩数据,并将文件输入流转换成解压数据流传递给普通SplitLineReader读取

        in = new SplitLineReader(codec.createInputStream(fileIn,

            decompressor), job, this.recordDelimiterBytes);

        filePosition = fileIn;

      }

    } else {

      fileIn.seek(start);

            //如果不是压缩文件,则创建普通SplitLineReader读取数据

      in = new SplitLineReader(fileIn, job, this.recordDelimiterBytes);

      filePosition = fileIn;

    }

4.4、更多MapReduce编程案例

4.4.1、reduce端join算法实现

1、需求:

订单数据表t_order

id

date

pid

amount

1001

20150710

P0001

2

1002

20150710

P0001

3

1002

20150710

P0002

3

商品信息表t_product

id

name

category_id

price

P0001

小米5

C01

2

P0002

锤子T1

C01

3

假如数据量巨大,两表的数据是以文件的形式存储在HDFS中,需要用mapreduce程序来实现一下SQL查询运算:

select  a.id,a.date,b.name,b.category_id,b.price from t_order a join t_product b on a.pid = b.id

2、实现机制:

通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reducetask,在reduce中进行数据的串联

public class OrderJoin {

         static class OrderJoinMapper extends Mapper<LongWritable, Text, Text, OrderJoinBean> {

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            // 拿到一行数据,并且要分辨出这行数据所属的文件

                            String line = value.toString();

                            String[] fields = line.split("\t");

                            // 拿到itemid

                            String itemid = fields[0];

                            // 获取到这一行所在的文件名(通过inpusplit

                            String name = "你拿到的文件名";

                            // 根据文件名,切分出各字段(如果是a,切分出两个字段,如果是b,切分出3个字段)

                            OrderJoinBean bean = new OrderJoinBean();

                            bean.set(null, null, null, null, null);

                            context.write(new Text(itemid), bean);

                   }

         }

         static class OrderJoinReducer extends Reducer<Text, OrderJoinBean, OrderJoinBean, NullWritable> {

                   @Override

                   protected void reduce(Text key, Iterable<OrderJoinBean> beans, Context context) throws IOException, InterruptedException {

                             //拿到的key是某一个itemid,比如1000

                            //拿到的beans是来自于两类文件的bean

                            //  {1000,amount} {1000,amount} {1000,amount}   ---   {1000,price,name}

                            //将来自于b文件的bean里面的字段,跟来自于a的所有bean进行字段拼接并输出

                   }

         }

}

缺点:这种方式中,join的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜

解决方案:mapjoin实现方式

4.4.2、map端join算法实现

1、原理阐述

适用于关联表中有小表的情形;

可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果,可以大大提高join操作的并发度,加快处理速度

2、实现示例

--先在mapper类中预先定义好小表,进行join

--引入实际场景中的解决方案:一次加载数据库或者用distributedcache

public class TestDistributedCache {

         static class TestDistributedCacheMapper extends Mapper<LongWritable, Text, Text, Text>{

                   FileReader in = null;

                   BufferedReader reader = null;

                   HashMap<String,String> b_tab = new HashMap<String, String>();

                   String localpath =null;

                   String uirpath = null;

                   //是在map任务初始化的时候调用一次

                   @Override

                   protected void setup(Context context) throws IOException, InterruptedException {

                            //通过这几句代码可以获取到cache file的本地绝对路径,测试验证用

                            Path[] files = context.getLocalCacheFiles();

                            localpath = files[0].toString();

                            URI[] cacheFiles = context.getCacheFiles();

                            //缓存文件的用法——直接用本地IO来读取

                            //这里读的数据是map task所在机器本地工作目录中的一个小文件

                            in = new FileReader("b.txt");

                            reader =new BufferedReader(in);

                            String line =null;

                            while(null!=(line=reader.readLine())){

                                     String[] fields = line.split(",");

                                     b_tab.put(fields[0],fields[1]); }

                            IOUtils.closeStream(reader);

                            IOUtils.closeStream(in);

                   }

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            //这里读的是这个map task所负责的那一个切片数据(在hdfs上)

                             String[] fields = value.toString().split("\t");

                             String a_itemid = fields[0];

                             String a_amount = fields[1];

                             String b_name = b_tab.get(a_itemid);

                             // 输出结果  1001      98.9 banan

                             context.write(new Text(a_itemid), new Text(a_amount + "\t" + ":" + localpath + "\t" +b_name ));

                   }

         }

         public static void main(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   Job job = Job.getInstance(conf);

                   job.setJarByClass(TestDistributedCache.class);

                   job.setMapperClass(TestDistributedCacheMapper.class);

                   job.setOutputKeyClass(Text.class);

                   job.setOutputValueClass(LongWritable.class);

                   //这里是我们正常的需要处理的数据所在路径

                   FileInputFormat.setInputPaths(job, new Path(args[0]));

                   FileOutputFormat.setOutputPath(job, new Path(args[1]));

                   //不需要reducer

                   job.setNumReduceTasks(0);

                   //分发一个文件到task进程的工作目录

                   job.addCacheFile(new URI("hdfs://hadoop-server01:9000/cachefile/b.txt"));

                   //分发一个归档文件到task进程的工作目录

//job.addArchiveToClassPath(archive);

                   //分发jar包到task节点的classpath

//job.addFileToClassPath(jarfile);

                   job.waitForCompletion(true);

         }

}

4.4.3、web日志预处理

1、需求:

web访问日志中的各字段识别切分

去除日志中不合法的记录

根据KPI统计需求,生成各类访问请求过滤数据

2、实现代码:

a)定义一个bean,用来记录日志数据中的各数据字段

public class WebLogBean {

         private String remote_addr;// 记录客户端的ip地址

    private String remote_user;// 记录客户端用户名称,忽略属性"-"

    private String time_local;// 记录访问时间与时区

    private String request;// 记录请求的urlhttp协议

    private String status;// 记录请求状态;成功是200

    private String body_bytes_sent;// 记录发送给客户端文件主体内容大小

    private String http_referer;// 用来记录从那个页面链接访问过来的

    private String http_user_agent;// 记录客户浏览器的相关信息

    private boolean valid = true;// 判断数据是否合法

public String getRemote_addr() {

                   return remote_addr;

         }

         public void setRemote_addr(String remote_addr) {

                   this.remote_addr = remote_addr;

         }

         public String getRemote_user() {

                   return remote_user;

         }

         public void setRemote_user(String remote_user) {

                   this.remote_user = remote_user;

         }

         public String getTime_local() {

                   return time_local;

         }

         public void setTime_local(String time_local) {

                   this.time_local = time_local;

         }

         public String getRequest() {

                   return request;

         }

         public void setRequest(String request) {

                   this.request = request;

         }

         public String getStatus() {

                   return status;

         }

         public void setStatus(String status) {

                   this.status = status;

         }

         public String getBody_bytes_sent() {

                   return body_bytes_sent;

         }

         public void setBody_bytes_sent(String body_bytes_sent) {

                   this.body_bytes_sent = body_bytes_sent;

         }

         public String getHttp_referer() {

                   return http_referer;

         }

         public void setHttp_referer(String http_referer) {

                   this.http_referer = http_referer;

         }

         public String getHttp_user_agent() {

                   return http_user_agent;

         }

         public void setHttp_user_agent(String http_user_agent) {

                   this.http_user_agent = http_user_agent;

         }

         public boolean isValid() {

                   return valid;

         }

         public void setValid(boolean valid) {

                   this.valid = valid;

         }

         @Override

         public String toString() {

        StringBuilder sb = new StringBuilder();

        sb.append(this.valid);

        sb.append("\001").append(this.remote_addr);

        sb.append("\001").append(this.remote_user);

        sb.append("\001").append(this.time_local);

        sb.append("\001").append(this.request);

        sb.append("\001").append(this.status);

        sb.append("\001").append(this.body_bytes_sent);

        sb.append("\001").append(this.http_referer);

        sb.append("\001").append(this.http_user_agent);

        return sb.toString();

}

}

b)定义一个parser用来解析过滤web访问日志原始记录

public class WebLogParser {

    public static WebLogBean parser(String line) {

        WebLogBean webLogBean = new WebLogBean();

        String[] arr = line.split(" ");

        if (arr.length > 11) {

           webLogBean.setRemote_addr(arr[0]);

           webLogBean.setRemote_user(arr[1]);

           webLogBean.setTime_local(arr[3].substring(1));

           webLogBean.setRequest(arr[6]);

           webLogBean.setStatus(arr[8]);

           webLogBean.setBody_bytes_sent(arr[9]);

           webLogBean.setHttp_referer(arr[10]);

            if (arr.length > 12) {

                webLogBean.setHttp_user_agent(arr[11] + " " + arr[12]);

            } else {

                webLogBean.setHttp_user_agent(arr[11]);

            }

            if (Integer.parseInt(webLogBean.getStatus()) >= 400) {// 大于400HTTP错误

                webLogBean.setValid(false);

            }

        } else {

           webLogBean.setValid(false);

        }

        return webLogBean;

    }

    public static String parserTime(String time) {

    time.replace("/", "-");

    return time;

    }

}

c)mapreduce程序

public class WeblogPreProcess {

         static class WeblogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

                   Text k = new Text();

                   NullWritable v = NullWritable.get();

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            String line = value.toString();

                            WebLogBean webLogBean = WebLogParser.parser(line);

                            if (!webLogBean.isValid())

                                     return;

                            k.set(webLogBean.toString());

                            context.write(k, v);

                   }

         }

         public static void main(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   Job job = Job.getInstance(conf);

                   job.setJarByClass(WeblogPreProcess.class);

                   job.setMapperClass(WeblogPreProcessMapper.class);

                   job.setOutputKeyClass(Text.class);

                   job.setOutputValueClass(NullWritable.class);

                   FileInputFormat.setInputPaths(job, new Path(args[0]));

                   FileOutputFormat.setOutputPath(job, new Path(args[1]));

                   job.waitForCompletion(true);

         }

}

流量统计相关需求

1、对流量日志中的用户统计总上、下行流量:

技术点: 自定义javaBean用来在mapreduce中充当value

注意: javaBean要实现Writable接口,实现两个方法

         //序列化,将对象的字段信息写入输出流

         @Override

         public void write(DataOutput out) throws IOException {

                   out.writeLong(upflow);

                   out.writeLong(downflow);

                   out.writeLong(sumflow);

         }

         //反序列化,从输入流中读取各个字段信息

         @Override

         public void readFields(DataInput in) throws IOException {

                   upflow = in.readLong();

                   downflow = in.readLong();

                   sumflow = in.readLong();

         }

2、统计流量且按照流量大小倒序排序

技术点:这种需求,用一个mapreduce-job 不好实现,需要两个mapreduce-job

第一个job负责流量统计,跟上题相同

第二个job读入第一个job的输出,然后做排序

要将flowBean作为map的key输出,这样mapreduce就会自动排序

     此时,flowBean要实现接口WritableComparable

     要实现其中的compareTo()方法,方法中,我们可以定义倒序比较的逻辑

3、统计流量且按照手机号的归属地,将结果数据输出到不同的省份文件中

技术点:自定义Partitioner       

         @Override

         public int getPartition(Text key, FlowBean value, int numPartitions) {

                   String prefix = key.toString().substring(0,3);

                   Integer partNum = pmap.get(prefix);

                   return (partNum==null?4:partNum);

         }

自定义partition后,要根据自定义partitioner的逻辑设置相应数量的reduce task

job.setNumReduceTasks(5);

注意:如果reduceTask的数量>= getPartition的结果数  ,则会多产生几个空的输出文件part-r-000xx

如果     1<reduceTask的数量<getPartition的结果数 ,则有一部分分区数据无处安放,会Exception!!!

如果 reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,最终也就只会产生一个结果文件 part-r-00000

如果将统计结果按照手机归属地不同省份输出到不同文件中:

1、  按照不同的省份将结果输出到不同的文件中;

Map:读一行、切分字段;

           抽取手机号,上行流量、下行流量;

           Context.write(手机号,bean)

Map输出的数据要分成六个区,输出的内容该到哪个区中,map调用了一个组件,partition,这个组件决定一个key到哪个区,文件中有个默认的hashpartition:

         在架构中存在的位置为:

         即将key的值除以reduce的值,然后作为分区的区号;

         重写partitional,让相同归属地的号码返回相同的分区号int;

        此时开始写map的代码:

1)  写具体的partitional分区类;

2)  在yarn中指定对应的分区:

     然后打包,再在linux中运行。

        

     运行结果为:

对应的结果文件为:

Cat其中的一个为:

出现的值即为结果。

2、Reduce:

假设有六个省,则跑六个reducetask,一个reduce拿到一个号码的所有数据,然后遍历,累加,即可输出;

社交粉丝数据分析

以下是qq的好友列表数据,冒号前是一个用,冒号后是该用户的所有好友(数据中的好友关系是单向的)

A:B,C,D,F,E,O

B:A,C,E,K

C:F,A,D,I

D:A,E,F,L

E:B,C,D,M,L

F:A,B,C,D,E,O,M

G:A,C,D,E,F

H:A,C,D,E,O

I:A,O

J:B,O

K:A,C,D

L:D,E,F

M:E,F,G

O:A,H,I,J

求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?

解题思路:

第一步 

map

读一行   A:B,C,D,F,E,O

输出    <B,A><C,A><D,A><F,A><E,A><O,A>

在读一行   B:A,C,E,K

输出   <A,B><C,B><E,B><K,B>

REDUCE

拿到的数据比如<C,A><C,B><C,E><C,F><C,G>......

输出: 

<A-B,C>

<A-E,C>

<A-F,C>

<A-G,C>

<B-E,C>

<B-F,C>.....

第二步

map

读入一行<A-B,C>

直接输出<A-B,C>

reduce

读入数据  <A-B,C><A-B,F><A-B,G>.......

输出: A-B  C,F,G,.....

扩展:求互粉的人!!!!

倒排索引建立

 

需求:有大量的文本(文档、网页),需要建立搜索索引:

首先要统计出总流量,然后让结果按照总流量排序;

在reduce中进来一个手机号,所有的记录都来了,常规上讲此时reduce就会指导输出,这样是无法实现排序的,因此此时可以在reduce中确定一个缓存,等数据完成后再进行排序,然后输出,但是这样如何确定数据传输完了呢?

第一种方法:

定义一个cleanup方法,然后将数据处理的逻辑放在cleanup中:

但是这样的方法效率太低,一般不推荐;

         第二种方法:

         将整个实现逻辑分成两步:

1)  统计总量:类似于原始逻辑,会形成一个含有上下行流量的数据集:

2)  然后再在他的基础上进行排序:

将每一个手机号的总流量信息封装成一个bean:(手机号,总流量bean):

此时可以进行总流量bean作为key进行排序,然后会形成一个有序的结果;

3)  此时map处理完成后,会形成一个排序后的数据给到reduce中;

4)  如果两个reduce,则无法保证两个reduce的输出结果保持一致状态,即前一个输出前五名,后一个输出后五名,因此需要用一个reduce;

5)  对应的代码为:

在yarn中可以指定对应的处理:

然后打包,再在linux中运行。

然后结果为:

这个程序对应的原理为:

1)  数据传输到map中时,maptask先调用recordreader方法,然后获得read()方法;

2)  Read方法会一次读一行文件,这是TextInputFormat的读取特性,如果想一次读两行,可以自己定义,读完之后返回一个kv值,这个kv值交给自定义的map,由map来使用;

3)  Collector会将数据存放在环形缓冲区中(即数组),这个缓冲区中后面一边写,前面一边回收,因此,这个缓冲区可以循环的填写内容,数组中的数据达到80%时,可以溢出到spiller中,缓冲区中的数据在溢出之前会先做一个分区,并进行排序,溢出一次写一次到文件中;

4)  溢出到文件中的数据最终会合并到一起(merge),即局部有序的文件归并排序,形成一个大文件;

5)  如果有两个map,此时会形成两个merge的大文件,这样一来就可以交给reducer,因为有两个reduce所以会有两个分区,分区的数量可以跟着reduce的数量动态的变;

6)  Reducetask去找被排序的文件,然后下载到reducetask本地磁盘工作目录中,并将其再次进行合并:

 

7)  在reduce中有一个组件方法,这个方法reduce传入(k,v)值,在reduce之前可以自定义一个GroupingComparator(k,netxtk),这个组件将相似的值看成一组,然后传给reduce,这一组的key相同,然后会形成context;此时数据获取的是0号分区的数据;

8)  然后outputFormat中的recordwriter方法会用write实现文件的传输,将数据放入到hdfs中;

9)另一个reducetask会取1号分区的数据;

上面即为shuffe的主要内容,当然还有一个combiner没有在图像中显示出来,下面可以具体讲一下combiner机制:

10)combiner的工作逻辑是一样的,在数据溢出之后使用,区别在于reduce是针对全局所有的数据来进行排序,但是combiner是针对本区内的数据进行排序;

如果有combiner则可以加载在溢出之后,Combiner如何写在程序中:

需要重新写一个类:

然后将这个类加载到yarn的方法中:

Combiner在使用的时候会出现问题,即不确定调用几次,溢出几次后combiner会被调用行程一个较大的数据文件,此时如果有新的数据溢出,就会形成新的循环,影响业务逻辑,所以一般不会使用。

对部分组件的详细介绍:

1.  自定义inputFormat

1.1 需求

无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案

1.2 分析

小文件的优化无非以下几种方式:

1、  在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS

2、  在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并

3、  在mapreduce处理时,可采用combineInputFormat提高效率

1.3 实现

本节实现的是上述第二种方式

程序的核心机制:

自定义一个InputFormat

改写RecordReader,实现一次读取一个完整文件封装为KV

在输出时使用SequenceFileOutPutFormat输出合并文件

代码如下:

自定义InputFromat

public class WholeFileInputFormat extends

                   FileInputFormat<NullWritable, BytesWritable> {

         //设置每个小文件不可分片,保证一个小文件生成一个key-value键值对

         @Override

         protected boolean isSplitable(JobContext context, Path file) {

                   return false;

         }

         @Override

         public RecordReader<NullWritable, BytesWritable> createRecordReader(

                            InputSplit split, TaskAttemptContext context) throws IOException,

                            InterruptedException {

                   WholeFileRecordReader reader = new WholeFileRecordReader();

                   reader.initialize(split, context);

                   return reader;

         }

}

自定义RecordReader

class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> {

         private FileSplit fileSplit;

         private Configuration conf;

         private BytesWritable value = new BytesWritable();

         private boolean processed = false;

         @Override

         public void initialize(InputSplit split, TaskAttemptContext context)

                            throws IOException, InterruptedException {

                   this.fileSplit = (FileSplit) split;

                   this.conf = context.getConfiguration();

         }

         @Override

         public boolean nextKeyValue() throws IOException, InterruptedException {

                   if (!processed) {

                            byte[] contents = new byte[(int) fileSplit.getLength()];

                            Path file = fileSplit.getPath();

                            FileSystem fs = file.getFileSystem(conf);

                            FSDataInputStream in = null;

                            try {

                                     in = fs.open(file);

                                     IOUtils.readFully(in, contents, 0, contents.length);

                                     value.set(contents, 0, contents.length);

                            } finally {

                                     IOUtils.closeStream(in);

                            }

                            processed = true;

                            return true;

                   }

                   return false;

         }

         @Override

         public NullWritable getCurrentKey() throws IOException,

                            InterruptedException {

                   return NullWritable.get();

         }

         @Override

         public BytesWritable getCurrentValue() throws IOException,

                            InterruptedException {

                   return value;

         }

         @Override

         public float getProgress() throws IOException {

                   return processed ? 1.0f : 0.0f;

         }

         @Override

         public void close() throws IOException {

                   // do nothing

         }

}

定义mapreduce处理流程

public class SmallFilesToSequenceFileConverter extends Configured implements

                   Tool {

         static class SequenceFileMapper extends

                            Mapper<NullWritable, BytesWritable, Text, BytesWritable> {

                   private Text filenameKey;

                   @Override

                   protected void setup(Context context) throws IOException,

                                     InterruptedException {

                            InputSplit split = context.getInputSplit();

                            Path path = ((FileSplit) split).getPath();

                            filenameKey = new Text(path.toString());

                   }

                   @Override

                   protected void map(NullWritable key, BytesWritable value,

                                     Context context) throws IOException, InterruptedException {

                            context.write(filenameKey, value);

                   }

         }

         @Override

         public int run(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   System.setProperty("HADOOP_USER_NAME", "hdfs");

                   String[] otherArgs = new GenericOptionsParser(conf, args)

                                     .getRemainingArgs();

                   if (otherArgs.length != 2) {

                            System.err.println("Usage: combinefiles <in> <out>");

                            System.exit(2);

                   }

                   Job job = Job.getInstance(conf,"combine small files to sequencefile");

//               job.setInputFormatClass(WholeFileInputFormat.class);

                   job.setOutputFormatClass(SequenceFileOutputFormat.class);

                   job.setOutputKeyClass(Text.class);

                   job.setOutputValueClass(BytesWritable.class);

                   job.setMapperClass(SequenceFileMapper.class);

                   return job.waitForCompletion(true) ? 0 : 1;

         }

         public static void main(String[] args) throws Exception {

                   int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(),

                                     args);

                   System.exit(exitCode);

         }

}

2.  自定义outputFormat

2.1 需求

现有一些原始日志需要做增强解析处理,流程:

1、  从原始日志文件中读取数据

2、  根据日志中的一个URL字段到外部知识库中获取信息增强到原始日志

3、  如果成功增强,则输出到增强结果目录;如果增强失败,则抽取原始数据中URL字段输出到待爬清单目录

2.2 分析

程序的关键点是要在一个mapreduce程序中根据数据的不同输出两类结果到不同目录,这类灵活的输出需求可以通过自定义outputformat来实现

2.3 实现

实现要点:

1、  在mapreduce中访问外部资源

2、  自定义outputformat,改写其中的recordwriter,改写具体输出数据的方法write()

代码实现如下:

数据库获取数据的工具

public class DBLoader {

         public static void dbLoader(HashMap<String, String> ruleMap) {

                   Connection conn = null;

                   Statement st = null;

                   ResultSet res = null;

                   try {

                            Class.forName("com.mysql.jdbc.Driver");

                            conn = DriverManager.getConnection("jdbc:mysql://hdp-node01:3306/urlknowledge", "root", "root");

                            st = conn.createStatement();

                            res = st.executeQuery("select url,content from urlcontent");

                            while (res.next()) {

                                     ruleMap.put(res.getString(1), res.getString(2));

                            }

                   } catch (Exception e) {

                            e.printStackTrace();

                   } finally {

                            try{

                                     if(res!=null){

                                               res.close();

                                     }

                                     if(st!=null){

                                               st.close();

                                     }

                                     if(conn!=null){

                                               conn.close();

                                     }

                            }catch(Exception e){

                                     e.printStackTrace();

                            }

                   }

         }

         public static void main(String[] args) {

                   DBLoader db = new DBLoader();

                   HashMap<String, String> map = new HashMap<String,String>();

                   db.dbLoader(map);

                   System.out.println(map.size());

         }

}

自定义一个outputformat

public class LogEnhancerOutputFormat extends FileOutputFormat<Text, NullWritable>{

         @Override

         public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {

                   FileSystem fs = FileSystem.get(context.getConfiguration());

                   Path enhancePath = new Path("hdfs://hdp-node01:9000/flow/enhancelog/enhanced.log");

                   Path toCrawlPath = new Path("hdfs://hdp-node01:9000/flow/tocrawl/tocrawl.log");

                   FSDataOutputStream enhanceOut = fs.create(enhancePath);

                   FSDataOutputStream toCrawlOut = fs.create(toCrawlPath);

                   return new MyRecordWriter(enhanceOut,toCrawlOut);

         }

         static class MyRecordWriter extends RecordWriter<Text, NullWritable>{

                   FSDataOutputStream enhanceOut = null;

                   FSDataOutputStream toCrawlOut = null;

                   public MyRecordWriter(FSDataOutputStream enhanceOut, FSDataOutputStream toCrawlOut) {

                            this.enhanceOut = enhanceOut;

                            this.toCrawlOut = toCrawlOut;

                   }

                   @Override

                   public void write(Text key, NullWritable value)

throws IOException, InterruptedException {

                            //有了数据,你来负责写到目的地  —— hdfs

                            //判断,进来内容如果是带tocrawl的,就往待爬清单输出流中写 toCrawlOut

                            if(key.toString().contains("tocrawl")){

                                     toCrawlOut.write(key.toString().getBytes());

                            }else{

                                     enhanceOut.write(key.toString().getBytes());

                            }

                   }

                   @Override

                   public void close(TaskAttemptContext context) throws IOException, InterruptedException {

                            if(toCrawlOut!=null){

                                     toCrawlOut.close();

                            }

                            if(enhanceOut!=null){

                                     enhanceOut.close();

                            }

                   }

         }

}

开发mapreduce处理流程

/**

 * 这个程序是对每个小时不断产生的用户上网记录日志进行增强(将日志中的url所指向的网页内容分析结果信息追加到每一行原始日志后面)

* @author

*/

public class LogEnhancer {

         static class LogEnhancerMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

                   HashMap<String, String> knowledgeMap = new HashMap<String, String>();

                   /**

                    * maptask在初始化时会先调用setup方法一次 利用这个机制,将外部的知识库加载到maptask执行的机器内存中

                    */

                   @Override

                   protected void setup(org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException {

                            DBLoader.dbLoader(knowledgeMap);

                   }

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            String line = value.toString();

                            String[] fields = StringUtils.split(line, "\t");

                            try {

                                     String url = fields[26];

                                     // 对这一行日志中的url去知识库中查找内容分析信息

                                     String content = knowledgeMap.get(url);

                                     // 根据内容信息匹配的结果,来构造两种输出结果

                                     String result = "";

                                     if (null == content) {

                                               // 输往待爬清单的内容

                                               result = url + "\t" + "tocrawl\n";

                                     } else {

                                               // 输往增强日志的内容

                                               result = line + "\t" + content + "\n";

                                     }

                                     context.write(new Text(result), NullWritable.get());

                            } catch (Exception e) {

                            }

                   }

         }

         public static void main(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   Job job = Job.getInstance(conf);

                   job.setJarByClass(LogEnhancer.class);

                   job.setMapperClass(LogEnhancerMapper.class);

                   job.setOutputKeyClass(Text.class);

                   job.setOutputValueClass(NullWritable.class);

                   // 要将自定义的输出格式组件设置到job中

                   job.setOutputFormatClass(LogEnhancerOutputFormat.class);

                   FileInputFormat.setInputPaths(job, new Path(args[0]));

                   // 虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat

                   // 而fileoutputformat要输出一个_SUCCESS文件,所以,在这还得指定一个输出目录

                   FileOutputFormat.setOutputPath(job, new Path(args[1]));

                   job.waitForCompletion(true);

                   System.exit(0);

         }

}

3.  自定义GroupingComparator

3.1 需求

有如下订单数据

订单id

商品id

成交金额

Order_0000001

Pdt_01

222.8

Order_0000001

Pdt_05

25.8

Order_0000002

Pdt_03

522.8

Order_0000002

Pdt_04

122.4

Order_0000003

Pdt_01

222.8

现在需要求出每一个订单中成交金额最大的一笔交易

3.2 分析

1、利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce

2、在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值

3.3 实现

自定义groupingcomparator

/**

 * 用于控制shuffle过程中reduce端对kv对的聚合逻辑

 * @author duanhaitao@itcast.cn

*/

public class ItemidGroupingComparator extends WritableComparator {

         protected ItemidGroupingComparator() {

                   super(OrderBean.class, true);

         }

         @Override

         public int compare(WritableComparable a, WritableComparable b) {

                   OrderBean abean = (OrderBean) a;

                   OrderBean bbean = (OrderBean) b;

                   //将item_id相同的bean都视为相同,从而聚合为一组

                   return abean.getItemid().compareTo(bbean.getItemid());

         }

}

定义订单信息bean

/**

 * 订单信息bean,实现hadoop的序列化机制

 * @author duanhaitao@itcast.cn

*/

public class OrderBean implements WritableComparable<OrderBean>{

         private Text itemid;

         private DoubleWritable amount;

         public OrderBean() {

         }

         public OrderBean(Text itemid, DoubleWritable amount) {

                   set(itemid, amount);

         }

         public void set(Text itemid, DoubleWritable amount) {

                   this.itemid = itemid;

                   this.amount = amount;

         }

         public Text getItemid() {

                   return itemid;

         }

         public DoubleWritable getAmount() {

                   return amount;

         }

         @Override

         public int compareTo(OrderBean o) {

                   int cmp = this.itemid.compareTo(o.getItemid());

                   if (cmp == 0) {

                            cmp = -this.amount.compareTo(o.getAmount());

                   }

                   return cmp;

         }

         @Override

         public void write(DataOutput out) throws IOException {

                   out.writeUTF(itemid.toString());

                   out.writeDouble(amount.get());

         }

         @Override

         public void readFields(DataInput in) throws IOException {

                   String readUTF = in.readUTF();

                   double readDouble = in.readDouble();

                   this.itemid = new Text(readUTF);

                   this.amount= new DoubleWritable(readDouble);

         }

@Override

         public String toString() {

                   return itemid.toString() + "\t" + amount.get();

         }

}

编写mapreduce处理流程

/**

 * 利用secondarysort机制输出每种item订单金额最大的记录

 * @author duanhaitao@itcast.cn

*/

public class SecondarySort {

         static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{

                   OrderBean bean = new OrderBean();

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            String line = value.toString();

                            String[] fields = StringUtils.split(line, "\t");

                            bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[1])));

                            context.write(bean, NullWritable.get());

                   }

         }

         static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{

                   //在设置了groupingcomparator以后,这里收到的kv数据 就是:  <1001 87.6>,null  <1001 76.5>,null  ....

                   //此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6>

                   //要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key

                   @Override

                   protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {

                            context.write(key, NullWritable.get());

                   }

         }

         public static void main(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   Job job = Job.getInstance(conf);

                   job.setJarByClass(SecondarySort.class);

                   job.setMapperClass(SecondarySortMapper.class);

                   job.setReducerClass(SecondarySortReducer.class);

                   job.setOutputKeyClass(OrderBean.class);

                   job.setOutputValueClass(NullWritable.class);

                   FileInputFormat.setInputPaths(job, new Path(args[0]));

                   FileOutputFormat.setOutputPath(job, new Path(args[1]));

                   //指定shuffle所使用的GroupingComparator类

                   job.setGroupingComparatorClass(ItemidGroupingComparator.class);

                   //指定shuffle所使用的partitioner类

                   job.setPartitionerClass(ItemIdPartitioner.class);

                   job.setNumReduceTasks(3);

                   job.waitForCompletion(true);

         }

}

4.  Mapreduce中的DistributedCache应用

4.1 Map端join案例

4.1.1 需求

实现两个“表”的join操作,其中一个表数据量小,一个表很大,这种场景在实际中非常常见,比如“订单日志” join “产品信息”

4.1.2 分析

--原理阐述

适用于关联表中有小表的情形;

可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果

可以大大提高join操作的并发度,加快处理速度

--示例:先在mapper类中预先定义好小表,进行join

--并用distributedcache机制将小表的数据分发到每一个maptask执行节点,从而每一个maptask节点可以从本地加载到小表的数据,进而在本地即可实现join

4.1.3 实现

public class TestDistributedCache {

         static class TestDistributedCacheMapper extends Mapper<LongWritable, Text, Text, Text>{

                   FileReader in = null;

                   BufferedReader reader = null;

                   HashMap<String,String> b_tab = new HashMap<String, String>();

                   String localpath =null;

                   String uirpath = null;

                   //是在map任务初始化的时候调用一次

                   @Override

                   protected void setup(Context context) throws IOException, InterruptedException {

                            //通过这几句代码可以获取到cache file的本地绝对路径,测试验证用

                            Path[] files = context.getLocalCacheFiles();

                            localpath = files[0].toString();

                            URI[] cacheFiles = context.getCacheFiles();

                            //缓存文件的用法——直接用本地IO来读取

                            //这里读的数据是map task所在机器本地工作目录中的一个小文件

                            in = new FileReader("b.txt");

                            reader =new BufferedReader(in);

                            String line =null;

                            while(null!=(line=reader.readLine())){

                                     String[] fields = line.split(",");

                                     b_tab.put(fields[0],fields[1]);

                            }

                            IOUtils.closeStream(reader);

                            IOUtils.closeStream(in);

                   }

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            //这里读的是这个map task所负责的那一个切片数据(在hdfs上)

                             String[] fields = value.toString().split("\t");

                             String a_itemid = fields[0];

                             String a_amount = fields[1];

                             String b_name = b_tab.get(a_itemid);

                             // 输出结果  1001      98.9 banan

                             context.write(new Text(a_itemid), new Text(a_amount + "\t" + ":" + localpath + "\t" +b_name ));

                   }

         }

         public static void main(String[] args) throws Exception {

                   Configuration conf = new Configuration();

                   Job job = Job.getInstance(conf);

                   job.setJarByClass(TestDistributedCache.class);

                   job.setMapperClass(TestDistributedCacheMapper.class);

                   job.setOutputKeyClass(Text.class);

                   job.setOutputValueClass(LongWritable.class);

                   //这里是我们正常的需要处理的数据所在路径

                   FileInputFormat.setInputPaths(job, new Path(args[0]));

                   FileOutputFormat.setOutputPath(job, new Path(args[1]));

                   //不需要reducer

                   job.setNumReduceTasks(0);

                   //分发一个文件到task进程的工作目录

                   job.addCacheFile(new URI("hdfs://hadoop-server01:9000/cachefile/b.txt"));

                   //分发一个归档文件到task进程的工作目录

//               job.addArchiveToClassPath(archive);

                   //分发jar包到task节点的classpath下

//               job.addFileToClassPath(jarfile);

                   job.waitForCompletion(true);

         }

}

5.  Mapreduce的其他补充

5.1 计数器应用

在实际生产代码中,常常需要将数据处理过程中遇到的不合规数据行进行全局计数,类似这种需求可以借助mapreduce框架中提供的全局计数器来实现

示例代码如下:

public class MultiOutputs {

         //通过枚举形式定义自定义计数器

         enum MyCounter{MALFORORMED,NORMAL}

         static class CommaMapper extends Mapper<LongWritable, Text, Text, LongWritable> {

                   @Override

                   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                            String[] words = value.toString().split(",");

                            for (String word : words) {

                                     context.write(new Text(word), new LongWritable(1));

                            }

                            //对枚举定义的自定义计数器加1

                            context.getCounter(MyCounter.MALFORORMED).increment(1);

                            //通过动态设置自定义计数器加1

                            context.getCounter("counterGroupa", "countera").increment(1);

                   }

         }

5.2 多job串联

一个稍复杂点的处理逻辑往往需要多个mapreduce程序串联处理,多job的串联可以借助mapreduce框架的JobControl实现

 

示例代码:

      ControlledJob cJob1 = new ControlledJob(job1.getConfiguration());

        ControlledJob cJob2 = new ControlledJob(job2.getConfiguration());

        ControlledJob cJob3 = new ControlledJob(job3.getConfiguration());

        // 设置作业依赖关系

        cJob2.addDependingJob(cJob1);

        cJob3.addDependingJob(cJob2);

        JobControl jobControl = new JobControl("RecommendationJob");

        jobControl.addJob(cJob1);

        jobControl.addJob(cJob2);

        jobControl.addJob(cJob3);

        cJob1.setJob(job1);

        cJob2.setJob(job2);

        cJob3.setJob(job3);

        // 新建一个线程来运行已加入JobControl中的作业,开始进程并等待结束

        Thread jobControlThread = new Thread(jobControl);

        jobControlThread.start();

        while (!jobControl.allFinished()) {

            Thread.sleep(500);

        }

        jobControl.stop();

   return 0;

5.3 Configuration对象高级应用

6.  mapreduce参数优化

MapReduce重要配置参数

11.1、资源相关参数

(1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

(2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

(3) mapreduce.map.java.opts: Map Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m-verbose:gc -Xloggc:/tmp/@taskid@.gc” (@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: “”

(4) mapreduce.reduce.java.opts: Reduce Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m-verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”

(5) mapreduce.map.cpu.vcores: 每个Map task可使用的最多cpu core数目, 默认值: 1

(6) mapreduce.map.cpu.vcores: 每个Reduce task可使用的最多cpu core数目, 默认值: 1

11.2、容错相关参数

(1) mapreduce.map.maxattempts: 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(2) mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(3) mapreduce.map.failures.maxpercent: 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

(4) mapreduce.reduce.failures.maxpercent: 当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0.

(5) mapreduce.task.timeout: Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是:

“AttemptID:attempt_14267829456721_123456_m_000224_0Timed out after 300 secsContainer killed by the ApplicationMaster.”。

11.3、本地运行mapreduce 作业

设置以下几个参数:

mapreduce.framework.name=local

mapreduce.jobtracker.address=local

fs.defaultFS=local

11.4、效率和稳定性相关参数

(1) mapreduce.map.speculative: 是否为Map Task打开推测执行机制,默认为false

(2) mapreduce.reduce.speculative: 是否为Reduce Task打开推测执行机制,默认为false

(3) mapreduce.job.user.classpath.first &mapreduce.task.classpath.user.precedence:当同一个class同时出现在用户jar包和hadoop jar中时,优先使用哪个jar包中的class,默认为false,表示优先使用hadoop jar中的class。

(4) mapreduce.input.fileinputformat.split.minsize: 每个Map Task处理的数据量(仅针对基于文件的Inputformat有效,比如TextInputFormat,SequenceFileInputFormat),默认为一个block大小,即 134217728。

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值