POJ 1637 || ZOJ 1992 混合图欧拉回路 最大流

题意是混合图是否有欧拉回路

引用一下别人的题解。。

混合图欧拉回路用的是网络流。
把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。
现在每个点入度和出度之差均为偶数。将这个偶数除以2,得x。即是说,对于每一个点,只要将x条边反向(入>出就是变入,出>入就是变出),就能保证出 = 入。如果每个点都是出 = 入,那么很明显,该图就存在欧拉回路。
现在的问题就变成了:该改变哪些边,可以让每个点出 = 入?构造网络流模型。有向边不能改变方向,直接删掉。开始已定向的无向边,定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入 > 出的点u,连接边(u, t)、容量为x,对于出 > 入的点v,连接边(s, v),容量为x(注意对不同的点x不同。当初由于不小心,在这里错了好几次)。之后,察看是否有满流的分配。有就是能有欧拉回路,没有就是没有。查看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度 = 出度的欧拉图。
由于是满流,所以每个入 > 出的点,都有x条边进来,将这些进来的边反向,OK,入 = 出了。对于出 > 入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出 > 入,和t连接的条件是入 > 出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入 = 出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。
所以,就这样,混合图欧拉回路问题,解了。

#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

typedef  long long LL;
const double PI = acos(-1.0);

template <class T> inline  T MAX(T a, T b){if (a > b) return a;return b;}
template <class T> inline  T MIN(T a, T b){if (a < b) return a;return b;}

const int N = 222;
const int M = 11111;
const LL MOD = 1000000007LL;
const int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1};
const int INF = 0x3f3f3f3f;

struct arclist {
    struct edge{int v, cap, next;} E[N + M << 1];
    int head[N], cur;
    inline void init()
    {
        memset(head, -1, sizeof(head)); cur = 0;
    }
    inline void add(int u, int v, int cap = 1) {
        E[cur].v = v; E[cur].cap = cap;
        E[cur].next = head[u]; head[u] = cur++;
        E[cur].v = u; E[cur].cap = 0;
        E[cur].next = head[v]; head[v] = cur++;
    }
    int SAP(int S, int T, int n)
    {
        int maxflow = 0, pre[N], dis[N] = {}, gap[N] = {};
        int cur[N]; memcpy(cur, head, sizeof(cur));
        gap[0] = n + 1; ++gap[dis[S] = 1];
        for (int u = pre[S] = S; dis[S] <= n; ++gap[++dis[u]], u = pre[u])
        {
            for (bool flag = true; flag;)
            {
                flag = false;
                for (int &p = cur[u]; ~p; p = E[p].next)
                {
                    if (!E[p].cap || dis[u] != dis[E[p].v] + 1) continue;
                    flag = true; pre[E[p].v] = u; u = E[p].v;
                    if (u == T)
                    {
                        int aug = INF;
                        for (int i = S; i != T; i = E[cur[i]].v)
                            if (aug > E[cur[i]].cap)
                            {
                                u = i; aug = E[cur[i]].cap;
                            }
                        for (int i = S; i != T; i = E[cur[i]].v)
                        {
                            E[cur[i]].cap -= aug;
                            E[cur[i] ^ 1].cap += aug;
                        }
                        maxflow += aug;
                    }
                    break;
                }

            }
            if (--gap[dis[u]] == 0) break;
            dis[u] = n;
            for (int p = head[u]; ~p; p = E[p].next)
                if (E[p].cap && dis[u] > dis[E[p].v]) {dis[u] = dis[E[p].v]; cur[u] = p;}
        }
        return maxflow;
    }
}flow;

int fr[1111], to[1111], d[1111];
int otd[N], ind[N];


int main()
{
	int T;
	scanf("%d", &T);
	while (T--)
	{
		int n, m, i, j, k, u, v, w;
		scanf("%d%d", &n, &m);
		memset(ind, 0, sizeof(ind));
		memset(otd, 0, sizeof(otd));
		for (i = 0; i < m; ++i)
		{
			scanf("%d%d%d", fr + i, to  + i, d + i);
			otd[fr[i]]++; ind[to[i]]++;
		}
		for (i = 1; i <= n; ++i)
		{
			if ((otd[i] - ind[i]) & 1)
			{
				break;
			}
		}
		if (i != n + 1) {printf("impossible\n"); continue;}
		flow.init();
		for (i = 0; i < m; ++i)
		{
			if (d[i] == 1) continue;
			flow.add(fr[i], to[i], 1);
		}
		int sum = 0;
		for (i = 1; i <= n; ++i)
		{
			int t = otd[i] - ind[i];
			if (t > 0)
			{
				flow.add(0, i, t / 2);
				sum += t / 2;
			}
			else
			{
				flow.add(i, n + 1, -t/2);
			}
		}
		if (flow.SAP(0, n + 1, n + 2) == sum) printf("possible\n");
		else printf("impossible\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值