一文懂KL散度KL Divergence

本文详细介绍了KL散度的概念,包括其非负性、非对称性,并探讨了它在概率分布比较、建模真实分布及变分自编码器中的应用。通过实例解释了为何KL散度不适合作为距离指标,并提供了与似然比的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        本文翻译自https://naokishibuya.medium.com/demystifying-kl-divergence-7ebe4317ee68

        KL散度中的KL全称是Kullback-Leibler,分别表示Solomon Kullback和Richard A.Leibler这两个人。

一、KL散度的定义

        KL散度表明概率分布Q和概率分布P之间的相似性,由交叉熵减去熵得到

D_{KL}(P||Q)=H(P,Q)-H(P)

        交叉熵和熵的计算如下

H(P,Q)=\mathbb{E}_{x\sim P}[-logQ(x)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值