博弈
文章平均质量分 72
LiWen_7
这个作者很懒,什么都没留下…
展开
-
hdu 1527 升级 2177(威佐夫博奕)
理论:(来自:http://www.wutianqi.com/?p=1081)威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。 这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数原创 2012-09-03 11:25:24 · 2618 阅读 · 0 评论 -
博弈类题目小结(hdu poj zoj)
转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526 by---cxlove首先当然要献上一些非常好的学习资料:基础博弈的小结:http://blog.csdn.net/acm_cxlove/article/details/7854530经典翻硬币游戏小结:http:/转载 2012-09-09 11:11:23 · 1762 阅读 · 0 评论 -
hdu 1525 || poj 2348 Euclid's Game(博弈找规律)
题意:给你a , b两个数,总是用大的数减去小的数的x倍,若能使其中一个数减完后为0,则该玩家获胜。思路:首先(设a>b), 若 a / b = 1 那么若 a%b==0,则第一个玩家获胜,但如果a % b !=0 ,那么局面变为: b , a%b(此时不能简单判断胜负。)若a / b >=2 那么 第一个玩家总是能选择对自己有利的局势:(1)若 a % b==0 则 a - (a/原创 2012-09-13 09:48:48 · 1607 阅读 · 0 评论 -
婓波那契博弈 hdu 2516
引用:http://blog.csdn.net/dgq8211/article/details/7602807有一堆个数为n的石子,游戏双方轮流取石子,满足:1)先手不能在第一次把所有的石子取完;2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。约定取走最后一个石子的人为赢家,求必败态。这个和之前的Wythoff转载 2012-09-13 13:56:32 · 982 阅读 · 0 评论 -
hdu 1079 Calendar Game(博弈SG函数 || 奇偶找规律)
题意:从当前日期,在他/她转的玩家可以移动到下一个历日或下月的同一天。当在之后的一个月中没有在同一天,播放器只能移动到下一个的日历日期。例如,从1924年12月19日,你可以移动到1924年12月20日,下一个日期,或一月19日,1925年,在同一天在下个月。然而,2001年1月31日,你可以只移动2001年2月1日,因为2001年2月31日是无效的。一个球员赢得比赛时,他/她到底到达的日期2原创 2012-09-05 21:56:45 · 3442 阅读 · 0 评论 -
hdu 1517 A Multiplication Game(博弈找规律)
1 2-----9 、 (9+1) ------- (2*9)、(2*9+1) ------- (2*9*9) 、(2*9*9+1) ------ (2*9*9*2)、(2*9*9*2+1) ------(2*9*9*2*9) ...... N P N原创 2012-09-05 16:35:59 · 1484 阅读 · 0 评论 -
hdu 1536、hdu 1944 S-Nim(博弈SG函数)
题意:多组测试数据 ,输入 k个集合S的元素,m种情况,m种(L堆,每堆hi个)。 若存在移动某堆能到达一个必败点,则该点为必胜点,输出W 必败点指无论怎么移动都只能到达必胜点,输出L。思路:SG函数 每堆看做一个子游戏,SG函数通过递归得到每种堆数的g();SG函数定义:对于一个递增有界的图G(X, F原创 2012-09-04 18:19:56 · 4313 阅读 · 0 评论 -
hdu 2147 kiki's game(基础博弈)
定义:必胜点(N点):下一个选手将取胜的点(将物品取完)。必败点(P点):前一个选手取胜的点(此时物品已经取完,或后面某次轮到当前选手时物品已经取完)。属性:1 、必胜点N点,一定有某种方法到达必败点P点。2、必败点P点,无论通过什么方法都只能到达必胜点N点。我们可以确定最后一个必败的情况(即物品数目为0,此题是指点(n,1)的位置,三个方向都找不到空位),然后反着原创 2012-09-04 00:08:46 · 1116 阅读 · 0 评论 -
博弈论
转_博弈论(比较全)博弈论(一):Nim游戏重点结论:对于一个Nim游戏的局面(a1,a2,...,an),它是P-position当且仅当a1^a2^...^an=0,其中^表示位异或(xor)运算。Nim游戏是博弈论中最经典的模型(之一?),它又有着十分简单的规则和无比优美的结论,由这个游戏开始了解博弈论恐怕是最合适不过了。Nim游戏是组合游戏(Combinat转载 2012-09-04 17:49:48 · 5555 阅读 · 1 评论 -
hdu 1907 John(取火柴游戏)
尼姆博奕(Nimm Game): 有三堆各有若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。 用(a , b , c)表示某种局势,首先(0, 0 , 0)显然是奇异局势(即后取得人一定取光物品),第二种奇异局势是(0 , n , n),只要与对手拿走同样多的物品,最后都将导致(0 , 0 , 0)。第三种(1 , 2 , 3)也是奇异原创 2012-09-03 16:59:08 · 1919 阅读 · 0 评论 -
hdu 3032 Nim or not Nim? (SG打表找规律)
题意:有n堆石子,alice先取,每次可以选择拿走一堆石子中的1~x(该堆石子总数) ,也可以选择将这堆石子分成任意的两堆。alice与bob轮流取,取走最后一个石子的人胜利。思路:因为数的范围比较大,所以最好通过SG打表的结果找出规律在解。sg(4k)=4k-1;sg(4k+1)=4k+1;sg(4k+2)=4k+2;sg(4k+3)=4k+4;SG打表代码:原创 2012-09-13 19:28:54 · 1346 阅读 · 0 评论