Scala Actor

Scala Actor

  1. 课程目标
    1. 目标一:熟悉Scala Actor并发编程
    2. 目标二:为学习Akka做准备

注:我们现在学的Scala Actorscala 2.10.x版本及以前版本的Actor

Scala2.11.x版本中将Akka加入其中,作为其默认的Actor,老版本的Actor已经废弃

  1. 什么是Scala Actor
    1. 概念

Scala中的Actor能够实现并行编程的强大功能,它是基于事件模型的并发机制,Scala是运用消息(message)的发送、接收来实现多线程的。使用Scala能够更容易地实现多线程应用的开发。

    1. 传统java并发编程与Scala Actor编程的区别

 

对于Java,我们都知道它的多线程实现需要对共享资源(变量、对象等)

使用synchronized 关键字进行代码块同步、对象锁互斥等等。

而且,常常一大块的try…catch语句块中加上wait方法、notify方法、notifyAll方法是让人很头疼的。

原因就在于Java中多数使用的是可变状态的对象资源,对这些资源进行共享来实现多线程编程的话,控制好资源竞争与防止对象状态被意外修改是非常重要的,而对象状态的不变性也是较难以保证的。

而在Scala中,我们可以通过复制不可变状态的资源(即对象,Scala中一切都是对象,连函数、方法也是)的一个副本,再基于Actor的消息发送、接收机制进行并行编程

    1. Actor方法执行顺序
  1. 首先调用start()方法启动Actor
  2. 调用start()方法后其act()方法会被执行
  3. 向Actor发送消息
    1. 发送消息的方式

!

发送异步消息,没有返回值。

!?

发送同步消息,等待返回值。

!!

发送异步消息,返回值是 Future[Any]。

 

  1. Actor实战
    1. 第一个例子
      //注意导包是scala.actors.Actor
      import scala.actors.Actor
      
      object MyActor1 extends Actor{
      
        //重新act方法
      
        def act(){
      
          for(i <- 1 to 10){
      
            println("actor-1 " + i)
      
            Thread.sleep(2000)
      
          }
      
        }
      
      }
      
        
      
        object MyActor2 extends Actor{
      
        //重新act方法
      
        def act(){
      
          for(i <- 1 to 10){
      
            println("actor-2 " + i)
      
            Thread.sleep(2000)
      
          }
      
        }
      
      }
      
        
      
        object ActorTest extends App{
      
        //启动Actor
      
        MyActor1.start()
      
        MyActor2.start()
      
      }

       


说明:上面分别调用了两个单例对象的start()方法,他们的act()方法会被执行,相同与在java中开启了两个线程,线程的run()方法会被执行

注意:这两个Actor是并行执行的,act()方法中的for循环执行完成后actor程序就退出了

 

2.第二个例子(可以不断地接收消息)

import scala.actors.Actor

/**
  * Created by ZX on 2016/4/4.
  */
class MyActor extends Actor {

  override def act(): Unit = {
    while (true) {
      receive {
        case "start" => {
          println("starting ...")
          Thread.sleep(5000)
          println("started")
        }
        case "stop" => {
          println("stopping ...")
          Thread.sleep(5000)
          println("stopped ...")
        }
      }
    }
  }
}

object MyActor {
  def main(args: Array[String]) {
    val actor = new MyActor
    actor.start()
    actor ! "start"
    actor ! "stop"
    println("消息发送完成!")
  }
}


注意:发送start消息和stop的消息是异步的,但是Actor接收到消息执行的过程是同步的按顺序执行说明:在act()方法中加入了while (true) 循环,就可以不停的接收消息

 

 

3.第三个例子(react方式会复用线程,比receive更高效)

import scala.actors.Actor

/**
  * Created by ZX on 2016/4/4.
  */
class YourActor extends Actor {

  override def act(): Unit = {
    loop {
      react {
        case "start" => {
          println("starting ...")
          Thread.sleep(5000)
          println("started")
        }
        case "stop" => {
          println("stopping ...")
          Thread.sleep(8000)
          println("stopped ...")
        }
      }
    }
  }
}


object YourActor {
  def main(args: Array[String]) {
    val actor = new YourActor
    actor.start()
    actor ! "start"
    actor ! "stop"
    println("消息发送完成!")
  }
}


说明: react 如果要反复执行消息处理,react外层要用loop,不能用while

 

 

4.第四个例子(结合case class发送消息)

import scala.actors.Actor

class AppleActor extends Actor {

  def act(): Unit = {
    while (true) {
      receive {
        case "start" => println("starting ...")
        case SyncMsg(id, msg) => {
          println(id + ",sync " + msg)
          Thread.sleep(5000)
          sender ! ReplyMsg(3,"finished")
        }
        case AsyncMsg(id, msg) => {
          println(id + ",async " + msg)
          Thread.sleep(5000)
        }
      }
    }
  }
}

object AppleActor {
  def main(args: Array[String]) {
    val a = new AppleActor
    a.start()
    //异步消息
    a ! AsyncMsg(1, "hello actor")
    println("异步消息发送完成")
    //同步消息
    //val content = a.!?(1000, SyncMsg(2, "hello actor"))
    //println(content)
    val reply = a !! SyncMsg(2, "hello actor")
    println(reply.isSet)
    //println("123")
    val c = reply.apply()
    println(reply.isSet)
    println(c)
  }
}
case class SyncMsg(id : Int, msg: String)
case class AsyncMsg(id : Int, msg: String)
case class ReplyMsg(id : Int, msg: String)


练习

用actor并发编程写一个单机版的WorldCount,将多个文件作为输入,计算完成后将多个任务汇总,得到最终的结果

import java.io.File

import scala.actors.{Actor, Future}
import scala.collection.mutable
import scala.io.Source

/**
  * Created by ZX on 2016/4/4.
  */
class Task extends Actor {

  override def act(): Unit = {
    loop {
      react {
        case SubmitTask(fileName) => {
          val contents = Source.fromFile(new File(fileName)).mkString
          val arr = contents.split("\r\n")
          val result = arr.flatMap(_.split(" ")).map((_, 1)).groupBy(_._1).mapValues(_.length)
          //val result = arr.flatMap(_.split(" ")).map((_, 1)).groupBy(_._1).mapValues(_.foldLeft(0)(_ + _._2))
          sender ! ResultTask(result)
        }
        case StopTask => {
          exit()
        }
      }
    }
  }
}

object WorkCount {
  def main(args: Array[String]) {
    val files = Array("c://words.txt", "c://words.log")

    val replaySet = new mutable.HashSet[Future[Any]]
    val resultList = new mutable.ListBuffer[ResultTask]

    for(f <- files) {
      val t = new Task
      val replay = t.start() !! SubmitTask(f)
      replaySet += replay
    }

    while(replaySet.size > 0){
      val toCumpute = replaySet.filter(_.isSet)
      for(r <- toCumpute){
        val result = r.apply()
        resultList += result.asInstanceOf[ResultTask]
        replaySet.remove(r)
      }
      Thread.sleep(100)
    }
    val finalResult = resultList.map(_.result).flatten.groupBy(_._1).mapValues(x => x.foldLeft(0)(_ + _._2))
    println(finalResult)
  }
}

case class SubmitTask(fileName: String)
case object StopTask
case class ResultTask(result: Map[String, Int])

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值