Starrocks读取paimon写入的bitmap数据

背景

bitmap这种结构在Starrocks中有广泛的用途,用于例如来访用户数,count distinct优化等等,那么如果结合paimon和flink,怎么样做到使用starrock读取flink写到paimon中的bitmap数据呢?

技术实现

首先需要明确一点,starrock内部使用的bitmap实现是starrock内部独有的,虽然和公共的RoaringBitmap的实现很像,原理也一样,但是实现上还是有差别的,所以需要明确一点,flink构建的bitmap对象也一定是starrock提供的bitmap类才可能做到
在这里插入图片描述

<think>首先,用户的问题是关于StarRocks如何支持Paimon表或集成Paimon。从引用中,我可以看到一些相关信息。 回顾引用: - 引用[1]提到在实时处理中使用Flink清洗数据写入PaimonPaimon进行表间关联,结果写入StarRocksStarRocks提供查询支持。 - 引用[2]是关于Apache Paimon数据湖查询引擎StarRocks的操作,如查看catalog、删除catalog等。 - 引用[3]讨论StarRocks运维,提到外表集群和内表集群的差异。 - 引用[4]提到Paimon在性能和开发成本上的优势,以及喜马拉雅选择Paimon。 - 引用[5]详细描述了如何集成PaimonStarRocks:使用Flink SQL写入Paimon,然后在StarRocks中创建外部catalog指向Paimon数据路径。 用户意图是查询StarRocks中对Paimon的支持或集成方式。所以,我需要基于这些引用,解释StarRocks如何支持Paimon表。 关键点: - StarRocks支持通过创建外部catalog来查询Paimon表。这意味着Paimon表不是直接存储在StarRocks中,而是作为外部表被查询。 - 引用[5]明确说:Paimon catalog和StarRocks集成只支持查询,不支持写入、创建数据库等。 - 设置过程:使用Flink SQL写入数据Paimon,然后在StarRocks中创建外部catalog指向Paimon的warehouse路径。 现在,系统级指令: 1. 所有行内数学表达式使用$...$格式。但在这个主题中,可能没有数学表达式,所以如果不需要,可以省略。 2. 独立公式使用$$...$$格式并单独成段。同样,可能不需要。 3. LaTeX语法正确。确保任何公式正确。 4. 使用中文回答。 5. 生成相关问题。 6. 回答中引用的段落末尾自然地添加引用标识,例如[^1]。 回答结构: - 清晰、逐步解决问题。 - 基于引用,确保真实可靠。 内容大纲: 1. **介绍StarRocksPaimon的支持方式**:StarRocks通过外部catalog机制支持查询Paimon表,但不支持写入操作。 2. **集成步骤**:参考引用[5],描述如何设置。 - 使用Flink SQL写入数据Paimon。 - 在StarRocks中创建外部catalog。 - 查询Paimon表。 3. **操作示例**:提供一些命令示例,如创建catalog、查询表等。 4. **限制**:只支持查询,不支持写入或DDL操作。 5. **优势**:基于引用[4],Paimon在性能和成本上的优势,结合StarRocks的OLAP能力。 6. **相关问题**:在末尾生成相关问题。 添加引用标识: - 当引用具体内容时,在末尾添加[^数字]。 例如: - 在描述集成步骤时,引用[5]。 - 在提到优势时,引用[4]。 最后,生成相关问题: - 基于主题,如:如何优化StarRocks查询Paimon的性能?Paimon支持哪些数据格式?StarRocks与其他数据湖的集成方式? 完整回答结构: 1. 开头解释支持方式。 2. 详细步骤。 3. 示例代码或命令。 4. 限制和优势。 5. 结尾生成相关问题。</think>### StarRocks 如何支持 Paimon 表或集成 Paimon StarRocks 支持通过 **外部 catalog 机制** 与 Paimon 数据湖集成,允许用户直接查询 Paimon 表中的数据。这种集成主要基于 StarRocks 的 OLAP 能力和 Paimon 的高效存储特性,适用于实时数据分析和查询场景。以下是详细的集成方式和支持步骤: #### 1. **支持方式概述** - **查询支持**:StarRocks 可以创建外部 catalog 指向 Paimon 的存储路径(如 HDFS 或对象存储),从而查询 Paimon 表。这利用了 StarRocks 的物化视图和 OLAP 引擎,为下游应用提供快速查询能力[^1]。 - **写入支持**:当前集成 **只支持查询操作,不支持写入、创建数据库或表**。写入数据Paimon 需要借助其他工具(如 Flink),然后通过 StarRocks 进行查询[^5]。 - **优势**:Paimon 在性能和开发成本上具有优势(如高效的数据湖存储和实时处理),而 StarRocks 提供低延迟的 OLAP 查询,两者结合适合实时分析场景[^4]。 #### 2. **集成步骤** 集成过程分为两个阶段:**数据写入 Paimon** 和 **StarRocks 查询配置**。以下是基于引用[^5]的详细步骤: **步骤 1: 使用 Flink SQL 写入数据Paimon** 由于 StarRocks 无法直接写入 Paimon,需先通过 Flink 完成数据写入。 ```sql -- 启动 Flink 会话(假设已部署 Flink) ./yarn-session.sh -d ./sql-client.sh -s yarn-session -- 创建 Paimon catalog CREATE CATALOG my_catalog WITH ( 'type' = 'paimon', 'warehouse' = 'hdfs://bigdata01:9000/user/paimon' -- 替换为实际存储路径 ); USE CATALOG my_catalog; -- 示例:写入测试数据Paimon 表 CREATE TEMPORARY TABLE word_table (word STRING) WITH ( 'connector' = 'datagen', 'fields.word.length' = '1' ); SET 'execution.checkpointing.interval' = '10 s'; -- 设置检查点间隔 INSERT INTO word_count SELECT word, COUNT(*) FROM word_table GROUP BY word; ``` 此步骤将数据写入 Paimon 的存储路径(如 HDFS),后续 StarRocks 通过外部 catalog 访问该路径[^5]。 **步骤 2: 在 StarRocks 中配置 Paimon 外部 catalog** 在 StarRocks 中创建外部 catalog,指向 Paimon 的存储位置,并查询数据。 ```sql -- 创建 Paimon 外部 catalog CREATE EXTERNAL CATALOG paimon_catalog_fs PROPERTIES ( "type" = "paimon", "paimon.catalog.type" = "filesystem", "paimon.catalog.warehouse" = "hdfs://bigdata01:9000/user/paimon" -- 与 Flink 路径一致 ); -- 查看所有 catalog SHOW CATALOGS; -- 切换到 Paimon catalog SET CATALOG paimon_catalog_fs; -- 查询 Paimon 表(示例:查询数据库 odsdb 下的表) USE paimon_catalog_fs.odsdb; -- 或直接指定数据库 SHOW TABLES FROM paimon_catalog_fs.odsdb; SELECT * FROM your_paimon_table; -- 替换为实际表名 ``` 此配置允许 StarRocks 直接查询 Paimon 表,无需数据迁移[^2][^5]。 #### 3. **关键限制与注意事项** - **只读操作**:StarRocks 仅支持查询 Paimon 表,不支持写入、修改或 DDL 操作(如创建表)。写入需通过 Flink 或其他引擎完成[^5]。 - **版本兼容性**:确保 StarRocksPaimon 版本兼容。建议使用 StarRocks 社区版(如 3.3.5)以减少自研功能带来的升级风险[^3]。 - **性能优化**:对于大规模查询,可利用 StarRocks 的物化视图加速,但需注意 Paimon数据更新频率以避免数据不一致[^1]。 - **生态系统成熟度**:Paimon 作为较新产品,社区支持仍在发展中,但反馈速度较快,适合快速迭代场景[^4]。 #### 4. **应用场景** - **实时数据分析**:例如,在实时处理流水线中,Flink 清洗数据写入 PaimonStarRocks 提供 OLAP 查询,支持下游报表或仪表盘[^1]。 - **数据湖查询**:适合需要结合历史数据和实时数据的场景,Paimon 存储原始数据StarRocks 提供高效聚合查询。 通过以上方式,StarRocksPaimon 的集成实现了数据湖的灵活查询,同时保持了高性能和低延迟。如需更多操作细节,可参考 StarRocks 官方文档或社区资源[^2][^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值