为什么你学不会递归?

本文转自:Java团长公众号

可能很多人在大一的时候,就已经接触了递归了,不过,我敢保证很多人初学者刚开始接触递归的时候,是一脸懵逼的,我当初也是,给我的感觉就是,递归太神奇了!

可能也有一大部分人知道递归,也能看的懂递归,但在实际做题过程中,却不知道怎么使用,有时候还容易被递归给搞晕。也有好几个人来问我有没有快速掌握递归的捷径啊。说实话,哪来那么多捷径啊,不过,我还是想写一篇文章,谈谈我的一些经验,或许,能够给你带来一些帮助。

为了兼顾初学者,我会从最简单的题讲起!

递归的三大要素

第一要素:明确你这个函数想要干什么

对于递归,我觉得很重要的一个事就是,这个函数的功能是什么,他要完成什么样的一件事,而这个,是完全由你自己来定义的。也就是说,我们先不管函数里面的代码什么,而是要先明白,你这个函数是要用来干什么。

例如,我定义了一个函数

1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3
4}

这个函数的功能是算 n 的阶乘。好了,我们已经定义了一个函数,并且定义了它的功能是什么,接下来我们看第二要素。

第二要素:寻找递归结束条件

所谓递归,就是会在函数内部代码中,调用这个函数本身,所以,我们必须要找出递归的结束条件,不然的话,会一直调用自己,进入无底洞。也就是说,我们需要找出当参数为啥时,递归结束,之后直接把结果返回,请注意,这个时候我们必须能根据这个参数的值,能够直接知道函数的结果是什么。

例如,上面那个例子,当 n = 1 时,那你应该能够直接知道 f(n) 是啥吧?此时,f(1) = 1。完善我们函数内部的代码,把第二要素加进代码里面,如下

1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3    if(n == 1){
4        return 1;
5    }
6}

有人可能会说,当 n = 2 时,那我们可以直接知道 f(n) 等于多少啊,那我可以把 n = 2 作为递归的结束条件吗?

当然可以,只要你觉得参数是什么时,你能够直接知道函数的结果,那么你就可以把这个参数作为结束的条件,所以下面这段代码也是可以的。

1// 算 n 的阶乘(假设n>=2)
2int f(int n){
3    if(n == 2){
4        return 2;
5    }
6}

注意我代码里面写的注释,假设 n >= 2,因为如果 n = 1时,会被漏掉,当 n <= 2时,f(n) = n,所以为了更加严谨,我们可以写成这样:

1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3    if(n <= 2){
4        return n;
5    }
6}

第三要素:找出函数的等价关系式

第三要素就是,我们要不断缩小参数的范围,缩小之后,我们可以通过一些辅助的变量或者操作,使原函数的结果不变。

例如,f(n) 这个范围比较大,我们可以让 f(n) = n * f(n-1)。这样,范围就由 n 变成了 n-1 了,范围变小了,并且为了原函数f(n) 不变,我们需要让 f(n-1) 乘以 n。

说白了,就是要找到原函数的一个等价关系式,f(n) 的等价关系式为 n * f(n-1),即

f(n) = n * f(n-1)。

这个等价关系式的寻找,可以说是最难的一步了,如果你不大懂也没关系,因为你不是天才,你还需要多接触几道题,我会在接下来的文章中,找 10 道递归题,让你慢慢熟悉起来

找出了这个等价,继续完善我们的代码,我们把这个等价式写进函数里。如下:

1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3    if(n <= 2){
4        return n;
5    }
6    // 把 f(n) 的等价操作写进去
7    return f(n-1) * n;
8}

至此,递归三要素已经都写进代码里了,所以这个 f(n) 功能的内部代码我们已经写好了。

这就是递归最重要的三要素,每次做递归的时候,你就强迫自己试着去寻找这三个要素。

还是不懂?没关系,我再按照这个模式讲一些题。

有些有点小基础的可能觉得我写的太简单了,没耐心看?少侠,请继续看,我下面还会讲如何优化递归。当然,大佬请随意,可以直接拉动最下面留言给我一些建议,万分感谢!

案例1:斐波那契数列

斐波那契数列的是这样一个数列:1、1、2、3、5、8、13、21、34….,即第一项 f(1) = 1,第二项 f(2) = 1…..,第 n 项目为 f(n) = f(n-1) + f(n-2)。求第 n 项的值是多少。

1、第一递归函数功能

假设 f(n) 的功能是求第 n 项的值,代码如下:

1int f(int n){
2
3}

2、找出递归结束的条件

显然,当 n = 1 或者 n = 2 ,我们可以轻易着知道结果 f(1) = f(2) = 1。所以递归结束条件可以为  n <= 2。代码如下:

1int f(int n){
2    if(n <= 2){
3        return 1;
4    }
5}

第三要素:找出函数的等价关系式

题目已经把等价关系式给我们了,所以我们很容易就能够知道 f(n) = f(n-1) + f(n-2)。我说过,等价关系式是最难找的一个,而这个题目却把关系式给我们了,这也太容易,好吧,我这是为了兼顾几乎零基础的读者。

所以最终代码如下:

1int f(int n){
2    // 1.先写递归结束条件
3    if(n <= 2){
4        return 1;
5    }
6    // 2.接着写等价关系式
7    return f(n-1) + f(n - 2);
8}

搞定,是不是很简单?

零基础的可能还是不大懂,没关系,之后慢慢按照这个模式练习!好吧,有大佬可能在吐槽太简单了。

案例2:小青蛙跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

1、第一递归函数功能

假设 f(n) 的功能是求青蛙跳上一个n级的台阶总共有多少种跳法,代码如下:

1int f(int n){
2
3}

2、找出递归结束的条件

我说了,求递归结束的条件,你直接把 n 压缩到很小很小就行了,因为 n 越小,我们就越容易直观着算出 f(n) 的多少,所以当 n = 1时,你知道 f(1) 为多少吧?够直观吧?即 f(1) = 1。代码如下:

1int f(int n){
2    if(n == 1){
3        return 1;
4    }
5}

第三要素:找出函数的等价关系式

每次跳的时候,小青蛙可以跳一个台阶,也可以跳两个台阶,也就是说,每次跳的时候,小青蛙有两种跳法。

第一种跳法:第一次我跳了一个台阶,那么还剩下n-1个台阶还没跳,剩下的n-1个台阶的跳法有f(n-1)种。

第二种跳法:第一次跳了两个台阶,那么还剩下n-2个台阶还没,剩下的n-2个台阶的跳法有f(n-2)种。

所以,小青蛙的全部跳法就是这两种跳法之和了,即 f(n) = f(n-1) + f(n-2)。至此,等价关系式就求出来了。于是写出代码:

1int f(int n){
2    if(n == 1){
3        return 1;
4    }
5    ruturn f(n-1) + f(n-2);
6}

大家觉得上面的代码对不对?

答是不大对,当 n = 2 时,显然会有 f(2) = f(1) + f(0)。我们知道,f(0) = 0,按道理是递归结束,不用继续往下调用的,但我们上面的代码逻辑中,会继续调用 f(0) = f(-1) + f(-2)。这会导致无限调用,进入死循环

这也是我要和你们说的,关于递归结束条件是否够严谨问题,有很多人在使用递归的时候,由于结束条件不够严谨,导致出现死循环。也就是说,当我们在第二步找出了一个递归结束条件的时候,可以把结束条件写进代码,然后进行第三步,但是请注意,当我们第三步找出等价函数之后,还得再返回去第二步,根据第三步函数的调用关系,会不会出现一些漏掉的结束条件。就像上面,f(n-2)这个函数的调用,有可能出现 f(0) 的情况,导致死循环,所以我们把它补上。代码如下:

1int f(int n){
2    //f(0) = 0,f(1) = 1,等价于 n<=1时,f(n) = n。
3    if(n <= 1){
4        return n;
5    }
6    ruturn f(n-1) + f(n-2);
7}

有人可能会说,我不知道我的结束条件有没有漏掉怎么办?别怕,多练几道就知道怎么办了。

看到这里有人可能要吐槽了,这两道题也太容易了吧??能不能被这么敷衍。少侠,别走啊,下面出道难一点的。

下面其实也不难了,就比上面的题目难一点点而已,特别是第三步等价的寻找。

案例3:反转单链表。

反转单链表。例如链表为:1->2->3->4。反转后为 4->3->2->1

链表的节点定义如下:

1class Node{
2    int date;
3    Node next;
4}

虽然是 Java语言,但就算你没学过 Java,我觉得也是影响不大,能看懂。

还是老套路,三要素一步一步来。

1、定义递归函数功能

假设函数 reverseList(head) 的功能是反转但链表,其中 head 表示链表的头节点。代码如下:

1Node reverseList(Node head){
2
3}

2. 寻找结束条件

当链表只有一个节点,或者如果是空表的话,你应该知道结果吧?直接啥也不用干,直接把 head 返回呗。代码如下:

1Node reverseList(Node head){
2    if(head == null || head.next == null){
3        return head;
4    }
5}

3. 寻找等价关系

这个的等价关系不像 n 是个数值那样,比较容易寻找。但是我告诉你,它的等价条件中,一定是范围不断在缩小,对于链表来说,就是链表的节点个数不断在变小,所以,如果你实在找不出,你就先对 reverseList(head.next) 递归走一遍,看看结果是咋样的。例如链表节点如下

 

我们就缩小范围,先对 2->3->4递归下试试,即代码如下

1Node reverseList(Node head){
2    if(head == null || head.next == null){
3        return head;
4    }
5    // 我们先把递归的结果保存起来,先不返回,因为我们还不清楚这样递归是对还是错。,
6    Node newList = reverseList(head.next);
7}

我们在第一步的时候,就已经定义了 reverseLis t函数的功能可以把一个单链表反转,所以,我们对 2->3->4反转之后的结果应该是这样:

我们把 2->3->4 递归成 4->3->2。不过,1 这个节点我们并没有去碰它,所以 1 的 next 节点仍然是连接这 2。

接下来呢?该怎么办?

其实,接下来就简单了,我们接下来只需要把节点 2 的 next 指向 1,然后把 1 的 next 指向 null,不就行了?,即通过改变 newList 链表之后的结果如下:

也就是说,reverseList(head) 等价于 ** reverseList(head.next)** + 改变一下1,2两个节点的指向。好了,等价关系找出来了,代码如下(有详细的解释):

 1//用递归的方法反转链表
 2public static Node reverseList2(Node head){
 3    // 1.递归结束条件
 4    if (head == null || head.next == null) {
 5             return head;
 6         }
 7         // 递归反转 子链表
 8         Node newList = reverseList2(head.next);
 9         // 改变 1,2节点的指向。
10         // 通过 head.next获取节点2
11         Node t1  = head.next;
12         // 让 2 的 next 指向 2
13         t1.next = head;
14         // 1 的 next 指向 null.
15        head.next = null;
16        // 把调整之后的链表返回。
17        return newList;
18    }

这道题的第三步看的很懵?正常,因为你做的太少了,可能没有想到还可以这样,多练几道就可以了。但是,我希望通过这三道题,给了你以后用递归做题时的一些思路,你以后做题可以按照我这个模式去想。通过一篇文章是不可能掌握递归的,还得多练,我相信,只要你认真看我的这篇文章,多看几次,一定能找到一些思路!!

我已经强调了好多次,多练几道了,所以呢,后面我也会找大概 10 道递归的练习题供大家学习,不过,我找的可能会有一定的难度。不会像今天这样,比较简单,所以呢,初学者还得自己多去找题练练,相信我,掌握了递归,你的思维抽象能力会更强!

接下来我讲讲有关递归的一些优化。

有关递归的一些优化思路

1. 考虑是否重复计算

告诉你吧,如果你使用递归的时候不进行优化,是有非常非常非常多的子问题被重复计算的。

啥是子问题? f(n-1),f(n-2)….就是 f(n) 的子问题了。

例如对于案例2那道题,f(n) = f(n-1) + f(n-2)。递归调用的状态图如下:

看到没有,递归计算的时候,重复计算了两次 f(5),五次 f(4)。。。。这是非常恐怖的,n 越大,重复计算的就越多,所以我们必须进行优化。

如何优化?一般我们可以把我们计算的结果保证起来,例如把 f(4) 的计算结果保证起来,当再次要计算 f(4) 的时候,我们先判断一下,之前是否计算过,如果计算过,直接把 f(4) 的结果取出来就可以了,没有计算过的话,再递归计算。

用什么保存呢?可以用数组或者 HashMap 保存,我们用数组来保存把,把 n 作为我们的数组下标,f(n) 作为值,例如 arr[n] = f(n)。f(n) 还没有计算过的时候,我们让 arr[n] 等于一个特殊值,例如 arr[n] = -1。

当我们要判断的时候,如果 arr[n] = -1,则证明 f(n) 没有计算过,否则, f(n) 就已经计算过了,且 f(n) = arr[n]。直接把值取出来就行了。代码如下:

 1// 我们实现假定 arr 数组已经初始化好的了。
 2int f(int n){
 3    if(n <= 1){
 4        return n;
 5    }
 6    //先判断有没计算过
 7    if(arr[n] != -1){
 8        //计算过,直接返回
 9        return arr[n];
10    }else{
11        // 没有计算过,递归计算,并且把结果保存到 arr数组里
12        arr[n] = f(n-1) + f(n-1);
13        reutrn arr[n];
14    }
15}

也就是说,使用递归的时候,必要
须要考虑有没有重复计算,如果重复计算了,一定要把计算过的状态保存起来。

2. 考虑是否可以自底向上

对于递归的问题,我们一般都是从上往下递归的,直到递归到最底,再一层一层着把值返回。

不过,有时候当 n 比较大的时候,例如当 n = 10000 时,那么必须要往下递归10000层直到 n <=1 才将结果慢慢返回,如果n太大的话,可能栈空间会不够用。

对于这种情况,其实我们是可以考虑自底向上的做法的。例如我知道

f(1) = 1;

f(2) = 2;

那么我们就可以推出 f(3) = f(2) + f(1) = 3。从而可以推出f(4),f(5)等直到f(n)。因此,我们可以考虑使用自底向上的方法来取代递归,代码如下:

 1public int f(int n) {
 2       if(n <= 2)
 3           return n;
 4       int f1 = 1;
 5       int f2 = 2;
 6       int sum = 0;
 7
 8       for (int i = 3; i <= n; i++) {
 9           sum = f1 + f2;
10           f1 = f2;
11           f2 = sum;
12       }
13       return sum;
14   }

这种方法,其实也被称之为递推

最后总结

其实,递归不一定总是从上往下,也是有很多是从下往上的,例如 n = 1 开始,一直递归到 n = 1000,例如一些排序组合。对于这种从下往上的,也是有对应的优化技巧,不过,我就先不写了,后面再慢慢写。这篇文章写了很久了,脖子有点受不了了,,,,颈椎病?害怕。。。。

说实话,对于递归这种比较抽象的思想,要把他讲明白,特别是讲给初学者听,还是挺难的,这也是我这篇文章用了很长时间的原因,不过,只要能让你们看完,有所收获,我觉得值得!有些人可能觉得讲的有点简单,没事,我后面会找一些不怎么简单的题。最后如果觉得不错,还请给我转发 or 点赞一波!

(完)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值