- 博客(2)
- 资源 (4)
- 收藏
- 关注
原创 方形矩阵的LU分解法
将系数矩阵A转变成等价两个矩阵L和U的乘积 ,其中L和U分别是单位下三角矩阵和上三角矩阵。当A的所有顺序主子式都不为0时,矩阵A可以分解为A=LU。其中L是下三角矩阵,U是上三角矩阵。 根据上图可以得到一般的思路,最下面这个方阵中的元素可表示为A[i,j]=ΣL[i,k]U[k,j],其中0=<k<=min(i,j).我们应该从最左和最上开始计算,依次向内层推进。 """Lower-Upper (LU) Decomposition.""" # lower–upper (LU) decompo
2020-09-07 18:46:31 1192
原创 高斯消元法解線性方程組
高斯消元法,也叫列簡化,是在線性代數中用來解一次方程的算法。通常認為等同於對係數組成的矩陣進行的一系列操作,使得該矩陣的左下角盡可能多地爲0,這些操作包括: 行交換 將一行乘以一個非零數 將一行加到另一行上 通過這些操作,一個矩陣總能轉換成一個上三角矩陣,確切的說是行階梯矩陣。如果所有的行第一個非零係數爲1,並且這列有0,那麼這個矩陣就叫做最簡行階梯矩陣。 如下圖中,最右邊的就是最簡行階梯矩陣。 通過行操作將矩陣轉化為最簡行階梯矩陣,就叫做高斯消元法。 """ Gaussian elimination
2020-09-06 19:33:04 227
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人