[bzoj 2190--SDOI2008]仪仗队

124 篇文章 2 订阅
6 篇文章 0 订阅

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N *N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐。
现在,C君希望你告诉他队伍整齐时能看到的学生人数。

这道题看起来没什么头绪,但实际上可以转化为较裸的莫比乌斯题目。其实有一个很重要的性质–假设一个点的坐标为(x,y),如果gcd(x,y)=1那么就说明c同学必定会看到这个点,如果gcd(x,y)=k(k!=1)那么这个点就会被坐标为(x/k,y/k)的这个点给挡住。所以这道题就变成了要你求有多少个gcd(i,j)=1(1<=i<=n-1)(1<=j<=n-1)的数量。当然我们还需要做一点点小改动,那就是特判一下(1,0)与(0,1)这两个点。
那么这题就变成了bzoj 1101,就解决了。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
int n,pr,prime[41000];
int Mu[41000],sM[41000];
bool v[41000];
void get_Mu()
{
    memset(v,true,sizeof(v));
    Mu[1]=1;sM[1]=1;
    for(int i=2;i<=40000;i++)
    {
        if(v[i]==true)
        {
            prime[++pr]=i;
            Mu[i]=-1;
        }
        for(int j=1;(j<=pr && i*prime[j]<=40000);j++)
        {
            v[i*prime[j]]=false;
            if(i%prime[j]==0)
            {
                Mu[i*prime[j]]=0;
                break;
            }
            Mu[i*prime[j]]=-Mu[i];
        }
        sM[i]=sM[i-1]+Mu[i];
    }
}
int find(int x,int y)
{
    if(x>y)swap(x,y);
    int ans=0,last=0;
    for(int i=1;i<=x;i=last+1)
    {
        last=min(x/(x/i),y/(y/i));
        ans+=(sM[last]-sM[i-1])*(x/i)*(y/i);
    }
    return ans;
}
int main()
{
    get_Mu();
    int ans=0;
    scanf("%d",&n);
    printf("%d\n",find(n-1,n-1)+2);
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值