给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
bzoj 1101的改动版,只是多了一个枚举素数的for,对每一个素数都进行莫比乌斯反演,基本思路与bzoj 1101是一样的。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
using namespace std;
bool v[10000005];
int pr=0,prime[10000005];
long long Mu[10000005],sM[10000005];
void getMu()
{
memset(v,true,sizeof(v));
Mu[1]=1;sM[1]=1;
for(int i=2;i<=10000000;i++)
{
if(v[i]==true)
{
prime[++pr]=i;
Mu[i]=-1;
}
for(int j=1;(j<=pr && i*prime[j]<=10000000);j++)
{
v[i*prime[j]]=false;
if(i%prime[j]==0)
{
Mu[i*prime[j]]=0;
break;
}
Mu[i*prime[j]]=-Mu[i];
}
sM[i]=sM[i-1]+Mu[i];
}
}
long long find(int x,int y)
{
if(x>y)swap(x,y);
long long ans=0,last=0;
for(int i=1;i<=x;i=last+1)
{
last=min(x/(x/i),y/(y/i));
ans+=(sM[last]-sM[i-1])*(x/i)*(y/i);
}
return ans;
}
int main()
{
getMu();
v[1]=false;
long long n,last;
long long ans=0;
scanf("%lld",&n);
for(long long i=1;(i<=pr && prime[i]<=n);i++)
{
long long m=n/prime[i];
ans+=find(m,m);
}
printf("%lld\n",ans);
return 0;
}