[bzoj 2818]Gcd

124 篇文章 2 订阅
6 篇文章 0 订阅

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.

bzoj 1101的改动版,只是多了一个枚举素数的for,对每一个素数都进行莫比乌斯反演,基本思路与bzoj 1101是一样的。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
using namespace std;
bool v[10000005];
int pr=0,prime[10000005];
long long Mu[10000005],sM[10000005];
void getMu()
{
    memset(v,true,sizeof(v));
    Mu[1]=1;sM[1]=1;
    for(int i=2;i<=10000000;i++)
    {
        if(v[i]==true)
        {
            prime[++pr]=i;
            Mu[i]=-1;
        }
        for(int j=1;(j<=pr && i*prime[j]<=10000000);j++)
        {
            v[i*prime[j]]=false;
            if(i%prime[j]==0)
            {
                Mu[i*prime[j]]=0;
                break;
            }
            Mu[i*prime[j]]=-Mu[i];
        }
        sM[i]=sM[i-1]+Mu[i];
    }
}   
long long find(int x,int y)
{
    if(x>y)swap(x,y);
    long long ans=0,last=0;
    for(int i=1;i<=x;i=last+1)
    {
        last=min(x/(x/i),y/(y/i));
        ans+=(sM[last]-sM[i-1])*(x/i)*(y/i);
    }
    return ans;
}
int main()
{
    getMu();
    v[1]=false;
    long long n,last;
    long long ans=0;
    scanf("%lld",&n);
    for(long long i=1;(i<=pr && prime[i]<=n);i++)
    {
        long long m=n/prime[i];
        ans+=find(m,m);
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值