对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y)=k,gcd(x,y)函数为x和y的最大公约数。
bzoj 1101的升级版,有了下限。建议大家先理解好bzoj 1101。
改动的并不是很多,就是多了一个容斥原理。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
int pr=0,prime[110000];
bool v[110000];
long long Mu[110000],sM[110000];
void get_Mu()
{
memset(v,true,sizeof(v));
Mu[1]=sM[1]=1;
for(int i=2;i<=100000;i++)
{
if(v[i]==true)
{
prime[++pr]=i;
Mu[i]=-1;
}
for(int j=1;(j<=pr && i*prime[j]<=100000);j++)
{
v[i*prime[j]]=false;
if(i%prime[j]==0)
{
Mu[i*prime[j]]=0;
break;
}
Mu[i*prime[j]]=-Mu[i];
}
sM[i]=sM[i-1]+Mu[i];
}
}
long long find(int x,int y)
{
if(x>y)swap(x,y);
int last=0;long long s=0;
for(int i=1;i<=x;i=last+1)
{
last=min(x/(x/i),y/(y/i));
s+=(sM[last]-sM[i-1])*(x/i)*(y/i);
}
return s;
}
int main()
{
get_Mu();
int t;
scanf("%d",&t);
while(t--)
{
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==0)
{
printf("0\n");
continue;
}
long long ans=0;
ans=find(b/k,d/k)-find((a-1)/k,d/k)-find(b/k,(c-1)/k)+find((a-1)/k,(c-1)/k);
printf("%lld\n",ans);
}
return 0;
}

本文介绍了一种算法,用于解决给定区间内求特定条件数对(x, y)的数量问题,通过使用容斥原理优化了原有算法,并提供完整的代码实现。
823

被折叠的 条评论
为什么被折叠?



