一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯。即:一个小矮人站在另一小矮人的肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口。对于每一个小矮人,我们知道他从脚到肩膀的高度Ai,并且他的胳膊长度为Bi。陷阱深度为H。如果我们利用矮人1,矮人2,矮人3,。。。矮人k搭一个梯子,满足A1+A2+A3+….+Ak+Bk>=H,那么矮人k就可以离开陷阱逃跑了,一旦一个矮人逃跑了,他就不能再搭人梯了。
我们希望尽可能多的小矮人逃跑, 问最多可以使多少个小矮人逃跑。
这道题是一道贪心,但并不只那么简单,需要用到dp。
假设有A与B,如果A在B后逃跑,A.x+B.x+B.y>=h,A.x+A.y>=h
如果B在A后逃跑,B.x+A.x+A.y>=h,B.x+B.y>=h
然后我们根据这个,用一大堆式子分类讨论,之后我们发现A.x+A.y< B.x+B.y,那么就说明B要在A后逃跑,于是我们可以用这个贪心,我们就可以确定如果可以逃跑,那让谁先逃。
但这还不够啊,所以需要定义f数组,f[i]表示有i个人逃跑后的人梯的高度,来判断是否可以逃跑,这就不想详讲了,之后就可以做了。
真是道好题啊!
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
struct node
{
int x,y,c;
}a[2100];
int cmp(const void *xx,const void *yy)
{
node n1=*(node *)xx;
node n2=*(node *)yy;
if(n1.c>n2.c)return 1;
if(n1.c<n2.c)return -1;
return 0;
}
long long f[2100];
int main()
{
memset(f,-1,sizeof(f));f[0]=0;
int n,h,ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].x,&a[i].y);
f[0]+=a[i].x;a[i].c=a[i].x+a[i].y;
}
scanf("%d",&h);
qsort(a+1,n,sizeof(node),cmp);
for(int i=1;i<=n;i++)
{
for(int j=ans;j>=0;j--)
{
if(f[j]+a[i].y>=h)f[j+1]=max(f[j+1],f[j]-a[i].x);
if(f[ans+1]!=-1)ans++;
}
}
printf("%d\n",ans);
return 0;
}