算法实现-->最长子序列问题

/*
 * 最长子序列
 */
public class LCS {
	
	int [][]c;
	public static void main(String[]args){
		
		String str1="ABCBDAB";
		String str2="BDCABA";
		
		LCS lcs=new LCS();
		char[][]b=lcs.getLCS(str1, str2);
		lcs.printB(b, str1.length()-1, str2.length()-1);
		
	}
	
	public void printB(char [][]b,int i,int j){
	 	 
		
		  if(i==-1||j==-1)return;
		  if(b[i][j]=='↖'){
			  printB(b,i-1,j-1);
			  System.out.println(i);  
		  }else if(b[i][j]=='←'){
			  printB(b,i,j-1);
			  
		  }else if (b[i][j]=='↑'){
			  printB(b,i-1,j);
		  }
		
		
		
		
	}
	public  char [][] getLCS(String str1,String str2){
				
		   
		    c=new int[str1.length()][str2.length()];
		   char[][]b=new char[str1.length()][str2.length()];		   
		   
		   ///初始化
		   if(str1.charAt(0)==str2.charAt(0)){
			   c[0][0]=1;
		   }else{
			   c[0][0]=0;
		   }
		   for(int i=0;i<str1.length();i++){
			   for(int j=0;j<str2.length();j++){
				   b[i][j]='0';
			   }
			   
		   }
		   for(int i=0;i<str1.length();i++){
			   if(str1.charAt(i)==str2.charAt(0)){
			   c[i][0]=1;
			   b[i][0]='↖';
			   }else{
				   c[i][0]=0;
				   b[i][0]='0';
				   
			   }
			   
		   }
		   
		   for(int j=0;j<str2.length();j++){
			   if(str1.charAt(0)==str2.charAt(j)){
				   c[0][j]=1;
				   b[0][j]='↖';
				   }else{
					   c[0][j]=0;
					   b[0][j]='0';
					   
				   }
		   }
		   
		   for(int i=1;i<str1.length();i++){
			   
			   for(int j=1;j<str2.length();j++){
				   
				   if(str1.charAt(i)==str2.charAt(j)){
					   c[i][j]=c[i-1][j-1]+1;
					   b[i][j]='↖';//指向左对角线位置
				   }else{					   
					   if(c[i-1][j]>=c[i][j-1]){
						   c[i][j]=c[i-1][j];
						   b[i][j]='↑';//向上移动
					   }else{
						   c[i][j]=c[i][j-1];
						   b[i][j]='←';//向左移动
					   }
					   
				   }
				   
				   
			   }

		   }
		   
		   for(int i=0;i<str1.length();i++){
			   for(int j=0;j<str2.length();j++){
				 System.out.print( b[i][j]+"  ");
			   }
				 System.out.println();
		   }	   
		   
		   return b;

	}
	
	
	
	
	

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值