用Scala编程,在Spark RDD下, 实现 WordCount 的8种方式 (2/3)

//方式4 map + aggregateByKey 

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

object WordCount04 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("aggregateByKey")
      .master("local[2]")
      .getOrCreate()
    val sc = spark.sparkContext
    val lines:RDD[String] = sc.textFile("data/thatgirl.txt")
    //扁平化操作,拆分数据为 一个单词一行
    val word:RDD[String] = lines.flatMap(_.split(" "))
    //map转换为 (key,1)
    val mapRDD:RDD[(String,Int)] = word.map((_, 1))
    //zeroValue为指定的初始值,所有的数据都会和这个值进行对比操作
    val res:RDD[(String,Int)] = mapRDD.aggregateByKey(0)(_ + _ , _ + _)
    res.collect.foreach(println)
    sc.stop()
  }
}

//方式5 map + foldByKey 

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

object WordCount05 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("foldByKey")
      .master("local[2]")
      .getOrCreate()
    val sc = spark.sparkContext
    val lines: RDD[String] = sc.textFile("data/thatgirl.txt")
    //扁平化操作,拆分数据为 一个单词一行
    val word: RDD[String] = lines.flatMap(_.split(" "))
    //map转换为 (key,1)
    val mapRDD: RDD[(String, Int)] = word.map((_, 1))
    //当aggregateByKey的分区内和分区外的逻辑一致时,就可以简写成为foldByKey
    val res: RDD[(String, Int)] = mapRDD.foldByKey(0)(_ + _)
    res.collect.foreach(println)
    sc.stop()
  }
}

//方式6 map + combineByKey 

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

object WordCount06 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("combineByKey")
      .master("local[2]")
      .getOrCreate()
    val sc = spark.sparkContext
    val lines: RDD[String] = sc.textFile("data/thatgirl.txt")
    //扁平化操作,拆分数据为 一个单词一行
    val word: RDD[String] = lines.flatMap(_.split(" "))
    //map转换为 (key,1)
    val mapRDD: RDD[(String, Int)] = word.map((_, 1))
    //combineByKey()的功能类似aggregateByKey()
    //分为3个参数,第一个是对分区内第一个值进行操作
    //第二个是分区内操作逻辑,第三个是分区间操作逻辑
    //但combineByKey()允许用户返回值的类型与输入不一样
    val res: RDD[(String, Int)] = mapRDD.combineByKey(
      v => v,
      (x,y) => x+y,
      (x,y) => x+y
    )
    res.collect.foreach(println)
    sc.stop()
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值