简单而复杂的Python

本文探讨了Python编程语言的简洁性和复杂性,重点分析了OpenAIChatCompletion接口的Python实现,涉及面向对象编程、装饰器、类型注解等高级特性,以及API客户端如何支持同步和异步操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python是一种简单&复杂的编程语言。简单的时候可以到极致:

print('hello world!')

另一方面,Python 也具有许多复杂的语法特性,例如面向对象编程、装饰器、迭代器、生成器等等。这些特性使得 Python 适用于各种不同的编程任务和项目。

当我好奇打开OpenAI的Python源代码时,Python的复杂性被体现的淋漓尽致。拿OpenAI经常被用到的Chat Completion接口实现文件completions.py为例。
太难了

可以从github打开源代码;如果你已经安装了OpenAI的library,那么也可以在本地直接打这个开源文件。

因为整个文件有上千行代码,中间create方法的重载也包含了很多重复的部分,这里只贴出它前边的一部分,注释部分是我自己加的:

'''
__future__ 是一个特殊的模块,用于在当前 Python 解释器中启用或禁用某些功能的特性
在当前模块中启用了 annotations 特性。
在 Python 3.7 之前,类型注解中的类型名称会被当作字符串处理,而不是真正的类型。使用 annotations 特性可以改变这种行为,使得类型注解中的类型名称被解释为真正的类型。
在 Python 3.7 及更高版本中,annotations 特性默认是启用的,因此在大多数情况下不需要显式导入。然而,如果你的代码需要与早期版本的 Python 兼容,或者你想显式表达你在代码中使用类型注解,则可以使用 from __future__ import annotations 来确保类型注解的正确行为。
'''
from __future__ import annotations
from typing import Dict, List, Union, Iterable, Optional, overload
from typing_extensions import Literal

import httpx

'''
Python中的相对导入语句。每个 . 代表包层次结构中向上一级。
...用于从当前模块相对于包层次结构至少三级深度处导入名为 _legacy_response 的模块
'''
from ..
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liyane

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值