基准时间限制:1 秒 空间限制:131072 KB 分值: 0
难度:基础题
给出一个有N个数的序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,最大的数是多少。
例如: 1 7 6 3 1。i = 1, j = 3,对应的数为7 6 3,最大的数为7。(该问题也被称为RMQ问题)
Input
第1行:1个数N,表示序列的长度。(2 <= N <= 10000) 第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9) 第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 10000) 第N + 3 - N + Q + 2行:每行2个数,对应查询的起始编号i和结束编号j。(0 <= i <= j <= N - 1)
Output
共Q行,对应每一个查询区间的最大值。
Input示例
5 1 7 6 3 1 3 0 1 1 3 3 4
Output示例
7 7 3
#include <iostream>
#include <cstring>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#define pi 3.1415926535898
#define e 2.718281828459
using namespace std;
typedef long long ll;
int main()
{
int n;
cin>>n;
ll a[n];
for(int i=0;i<n;i++)
{
cin>>a[i];
}
int q;
cin>>q;
while(q--)
{
int i,j,max=0;
cin>>i>>j;
for(int ii=i;ii<=j;ii++)
{
if(max<=a[ii])
max=a[ii];
}
cout<<max<<endl;
max=0;
}
return 0;
}