【力扣】474. Ones and Zeroes

474. Ones and Zeroes

You are given an array of binary strings strs and two integers m and n.

Return the size of the largest subset of strs such that there are at most m 0’s and n 1’s in the subset.

A set x is a subset of a set y if all elements of x are also elements of y.

Example 1:

Input: strs = [“10”,“0001”,“111001”,“1”,“0”], m = 5, n = 3

Output: 4

Explanation: The largest subset with at most 5 0’s and 3 1’s is {“10”, “0001”, “1”, “0”}, so the answer is 4.

Other valid but smaller subsets include {“0001”, “1”} and {“10”, “1”, “0”}.

{“111001”} is an invalid subset because it contains 4 1’s, greater than the maximum of 3.

思路

这道题本质上还是01背包问题,strs数组中的每一个元素是物品,只是这里物品的重量有两个维度:“0”的数量和“1”的数量。

所以这里dp数组要设为二维数组,dp[i][j]表示在strs中最多有i个0和j个1的最大子集数。

递推公式dp[i][j] = max( dp[i][j], dp[i-zeroNum][j-oneNum]+1 )。

需要注意的是这里是+1而不是+value[i][j],因为dp数组表示的是子集数,将当前子集放入,子集数就+1。

AC代码

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));

        for(string str:strs){
            int zeroNum=0,oneNum=0;
            for(char c:str){
                if(c=='0')zeroNum++;
                else oneNum++;
            }
            for(int i=m;i>=zeroNum;i--){
                for(int j=n;j>=oneNum;j--){
                    dp[i][j]=max(dp[i][j],dp[i-zeroNum][j-oneNum]+1);
                }
            }
        }

        return dp[m][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值