裁剪最大十字架

题目

给出一个n行m列的的表格,表格有若干格子被涂黑,求其中最大的十字架。

要求:

(1)十字架的四个角必须是空的,下图中绿框满足条件,红框不满足条件(右上角被涂黑);

(2)十字架可以是截取的一部分(如绿框),但必须满足十字架所在的整个矩形(边长a)是正方形,且十字架可看成由五个相同的面积正方形(边长b)构成,每个角的空白区也由面积相同的正方形构成,a=3*b.如下图,红框则不满足条件。

(3)如果有多个满足条件的十字架,则输出行数i最小的,若行数相等,则输出列数j最小的。(图中满足条件的十字架有两个,输出编号为“1”的十字架所在正方形左上角和右下角的坐标,如图中,输出:1 1 4 4)

样例输入:

 6 6

010010

111111

010010

010010

111111

010010

输出:

1 1 3 3

说明:

输入的矩形如上图,第一行两个数字表示row行col列,接下来row行中分别表示该行的每一个格子的状态,“1”表示该格涂黑,“0”表示该格空白,输出满足上述条件的最大十字架所在的正方形左上角和右下角坐标,坐标从左上角开始计起,从左往右为1到row、从上往下为1到col.

该样例中输出的是上图标号1的绿框的左上角和右下角坐标:1 1 3 3.

分析

①我们在判断样例时,最直观的想法就是,先找边长为6的正方形,看其中黑白格子的分布是否满足条件。如过满足条件,该正方形涂黑的格子应该如图二绿色部分。我们先判断格子(1,1)是否满足条件,留空,满足条件,接下来判断格子(1,2)是否满足条件,该格应该为空,而实际上是涂黑的,不满足条件,寻找下一个边长为6的正方形,没有了,那么证明边长为6的正方形构成十字架不存在。则寻找边长为3的正方形(根据条件2,矩阵的边长一定是3的倍数)。

        

                             图一                                                            图二

②寻找边长为3的正方形,看是否满足条件。判断(1,1)格满足条件,(1,2)格满足条件...

全部满足条件,输出1 1 3 3.

    

                           图三                                                                  图四

③每一次,我们都需要判断每一个格子是否满足条件,效率自然低了,有没有办法一次性判断多个格子是否满足条件?

有,把每一行、每一列连续出现多少个相同颜色的格子 这个信息存起来。

步骤:

①构建一个row行col列的数组conRow[][],数组中,conRow[i][j]为正数,表示i行中,从右侧算起到序号为j格为止一共有conRow[i][j]个黑色格子;

conRow[i][j]为负数,表示i行中,从右侧算起到序号为j格为止一共有abs(conRow[i][j])个白色格子;

所以conRow为:

②同理,构建一个row行col列的数组conCol[][],数组中,conCol[i][j]为正数,表示j列中,从下侧算起到序号i格为止一共有conCol[i][j]个黑色格子;conRow[i][j]为负数,表示j列中,从下侧算起到序号i格为止一共有abs(conCol[i][j])个白色格子;

所以conCol为:

③此时,我们只需要判断正方形中某些格子的conRow、conCol值是否满足特点条件,就可以确定该正方形是否存在满足条件的十字架了。

条件就是如果正方形中存在满足条件的十字架(如图五),则绿色框内的格子conRow[i][j]一定满足conRow[i][j]>=正方形边长a,蓝色框内的格子conCol[i][j]一定满足conCol[i][j]>=正方形边长a,而红色框的格子满足条件conRow[i][j]>=a/3 和 conCol[i][j]>=a/3。

这是构成十字架的充要条件,这个时候,我们需要判断的格子的数量就从a^2减少到了a/3*2+4了,哈哈哈,是不是很开心。

                           图五                                                             

置于为什么conRow算连续同色格子要从右侧算起,conCol连续同色格子要从下侧算起呢?为什么不能从左侧和上侧算起呢?这是为了满足条件(3),条件(3)的要求是,如果有多个满足条件的十字架,则输出行数i最小的,若行数相等,则输出列数j最小的。这样我们就保证了左边的数大于右边,上面的数大于下面,耶~

代码如下:

import java.util.Scanner;
public class Main {
	public static void main(String args[]) {
		Scanner sc = new Scanner(System.in);
		int row = sc.nextInt();
		int col = sc.nextInt();
		sc.nextLine();
		int [][] arr = new int[row][col];
		
		for(int i=0;i<row;i++){
			char[] charS = sc.nextLine().toCharArray();
			for(int j=0;j<col;j++){
				arr[i][j] = charS[j]-'0';
			}
		}
		int[][] conRow = new int[row][col];
		int[][] conCol = new int[row][col];
		int rowMax = 0;
		int colMax = 0;
		int count = 0;
        //构建conRow和conCol
		for(int i=row-1;i>-1;i--){
			for(int j=col-1;j>-1;j--){
				if(j==col-1||arr[i][j+1]!=arr[i][j]){
					conRow[i][j] = arr[i][j]==0?-1:1;					
				}else{
					conRow[i][j] = conRow[i][j+1] + (arr[i][j]==0?-1:1);
				}
				rowMax = Math.max(rowMax, conRow[i][j]);
				if(i==row-1||arr[i+1][j]!=arr[i][j]){
					conCol[i][j] = arr[i][j]==0?-1:1;					
				}else{
					conCol[i][j] = conCol[i+1][j] + (arr[i][j]==0?-1:1);
				}
				colMax = Math.max(colMax, conCol[i][j]);
			}
		}
		int[] res = new int[4];
		for(int item:res){
			item = -1;
		}
        //从边长最大的正方形开始判断,有则输出结果,停止,没有则边长缩小3,继续寻找
		int max= Math.min(colMax, rowMax)/3*3;
		Label :while(max>0){
			for(int i=0;i<row;i++){
				for(int j=0;j<col;j++){
					if(conRow[i][j]>=max){
						if(new Main().isSquare(i, j, max/3,conRow,conCol)){
							res[0] = i-max/3+1;
							res[1] = j+1;
							res[2] = i+max/3*2;
							res[3] = j+max;
							break Label;
						}
					}
				}
			}
			max -= 3;
		}
		for(int i=0;i<res.length;i++){
			if(i!=0)
				System.out.print(" ");
			System.out.print(res[i]);
		}
	}
	
	public boolean isSquare(int row1,int col1,int k,int [][]conRow, int [][]conCol){
		if(row1<k||row1>conRow.length-2*k||col1>conRow[0].length-k*3){
			return false;
		}
		//判断黑色块,绿色框内数字
		for(int i=0;i<k;i++){
			if(conRow[row1+i][col1]<k){
				return false;
			}
		}
            //判断黑色块,蓝色框内数字
		for(int i=0;i<k;i++){
			if(conCol[row1-k][col1+k+i]<k){
				return false;
			}
		}
		//判断白色块,负数
		if(conRow[row1-k][col1]>0-k||conCol[row1-k][col1]>0-k||
				conRow[row1+k][col1]>0-k||conCol[row1+k][col1]>0-k||
				conRow[row1-k][col1+2*k]>0-k||conCol[row1-k][col1+2*k]>0-k||
				conRow[row1+k][col1+2*k]>0-k||conCol[row1+k][col1+2*k]>0-k)
			return false;
		return true;
	}

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值