Description
码零鼠是一只很喜欢mx数学的神犇,上面那个不是ta本人的样子。这天,ta在研究一个神奇的数列,这个数列是这样的:
a0 = 1
an = ai + aj (n>=1, i,j均在[0,n-1]内均匀随机)
Ta想知道对于给定的n,an的期望值是多少,你能告诉ta吗?
出于ta对整数的热爱,你只需要输出答案向下取整后的值
Input
一个整数T,表示数据组数
每组数据一行,包括一个整数n
Output
一个整数E(an),
Sample Input
2
0
1
Sample Output
1
2
Data Constraint
对于前30%的数据T<=10, n<=3000
对于前60%的数据T<=100, n<=100000
对于100%的数据T <= 10000, 0 <= n <= 2147483647
Hint
F0只能是1
F1只能等于F0+F0=2
Solution
这题 直接推算 或者 打表找规律 都可以轻易推出公式:
Fi = i+1所以直接读入 N ,然后输出 N+1 即可。
注意 N 最大是 231−1 ,会爆 int ,需开 long long 。
Code
#include<cstdio>
using namespace std;
const int N=2147483647;
inline int read()
{
int X=0,w=1; char ch=0;
while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
return X*w;
}
int main()
{
int T=read();
while(T--)
{
int x=read();
if(x<N) printf("%d\n",x+1); else printf("%lld\n",(long long)N+1);
}
return 0;
}