JZOJ 5182. 【NOIP2017提高组模拟6.29】码灵鼠

Description

码零鼠是一只很喜欢mx数学的神犇,上面那个不是ta本人的样子。这天,ta在研究一个神奇的数列,这个数列是这样的:
a0 = 1
an = ai + aj (n>=1, i,j均在[0,n-1]内均匀随机)
Ta想知道对于给定的n,an的期望值是多少,你能告诉ta吗?
出于ta对整数的热爱,你只需要输出答案向下取整后的值

Input

一个整数T,表示数据组数
每组数据一行,包括一个整数n

Output

一个整数E(an),

Sample Input

2
0
1

Sample Output

1
2

Data Constraint

对于前30%的数据T<=10, n<=3000
对于前60%的数据T<=100, n<=100000
对于100%的数据T <= 10000, 0 <= n <= 2147483647

Hint

F0只能是1
F1只能等于F0+F0=2

Solution

  • 这题 直接推算 或者 打表找规律 都可以轻易推出公式:

    Fi = i+1

  • 所以直接读入 N ,然后输出 N+1 即可。

  • 注意 N 最大是 2311 ,会爆 int ,需开 long long

Code

#include<cstdio>
using namespace std;
const int N=2147483647;
inline int read()
{
    int X=0,w=1; char ch=0;
    while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
    return X*w;
}
int main()
{
    int T=read();
    while(T--)
    {
        int x=read();
        if(x<N) printf("%d\n",x+1); else printf("%lld\n",(long long)N+1);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值